
Splunk 5.0.1

Search Reference

Generated: 1/18/2013 9:55 am

Copyright © 2013 Splunk, Inc. All Rights Reserved

Table of Contents
Introduction..1

 Welcome to the Search Reference Manual..1
 How to use this manual...1

Search Reference Overview..3
 Search Command Cheat Sheet and Search Language Quick
 Reference Card..3
 Popular search commands...11
 Splunk for SQL users..13

Search Commands and Functions...20
 All search commands..20
 Functions for eval and where..27
 Functions for stats, chart, and timechart...37
 Common date and time format variables..41
 Time modifiers for search..43
 List of data types...47

Search Command Reference..83
 abstract...83
 accum..84
 addcoltotals...85
 addinfo..86
 addtotals..87
 analyzefields...89
 anomalies..90
 anomalousvalue..94
 append..97
 appendcols..101
 appendpipe...103
 associate...103
 audit..106
 autoregress...107
 bucket..109
 bucketdir..112
 chart..113
 cluster..127
 collect..131
 concurrency...133

i

Table of Contents
Search Command Reference

 contingency...138
 convert..143
 correlate..148
 crawl..150
 dbinspect...151
 dedup..153
 delete..156
 delta..157
 diff...162
 erex...164
 eval..165
 eventcount...174
 eventstats..175
 extract (kv)..177
 fieldformat...179
 fields..180
 fieldsummary...182
 filldown..183
 fillnull...184
 findtypes..185
 folderize...187
 format..188
 gauge..189
 gentimes..191
 head..193
 highlight...194
 history..195
 iconify..196
 input..197
 inputcsv...198
 inputlookup..200
 iplocation...202
 join...203
 kmeans..205
 kvform...207
 loadjob...208
 localize..210
 localop...212

ii

Table of Contents
Search Command Reference

 lookup..212
 makecontinuous..215
 makemv...217
 map...219
 metadata...221
 metasearch...223
 multikv...225
 multisearch..227
 mvcombine..228
 mvexpand..230
 nomv...232
 outlier..233
 outputcsv...235
 outputlookup..236
 outputtext..238
 overlap..239
 predict...240
 rangemap..243
 rare..245
 regex...247
 relevancy...249
 reltime...249
 rename..250
 replace..252
 rest..253
 return...255
 reverse..256
 rex...257
 rtorder..259
 run...260
 savedsearch..260
 script..262
 scrub...263
 search...264
 searchtxn...270
 selfjoin...271
 set...273
 setfields...274

iii

Table of Contents
Search Command Reference

 sendemail..275
 sichart..278
 sirare...279
 sistats..280
 sitimechart...281
 sitop...282
 sort..283
 spath...286
 stats...291
 strcat...299
 streamstats..300
 table..303
 tags...307
 tail..309
 timechart...310
 top...323
 transaction...326
 transpose..335
 trendline..336
 typeahead...338
 typelearner..339
 typer..340
 uniq...341
 untable..342
 where..343
 x11..344
 xmlkv...346
 xmlunescape...347
 xpath...348
 xyseries...350

Internal Search Commands..352
 About internal commands...352
 collapse...352
 dispatch...353
 runshellscript...353
 tscollect...354
 tstats..356

iv

Table of Contents
Search in the CLI..360

 About searches in the CLI...360
 Syntax for searches in the CLI..361

v

Introduction

 Welcome to the Search Reference Manual

In this manual, you'll find a reference guide for the Splunk user who is looking for
a catalog of the search commands with complete syntax, descriptions, and
examples for usage.

If you're looking for an introduction to searching in Splunk, read the Search
Manual to get you started.

See the "List of search commands" in the Search Overview chapter for a catalog
of the search commands, with a short description of what they do and related
search commands. Each search command links you to its reference page in the
Search Command chapter of this manual. If you want to just jump right in and
start searching, the Search command cheat sheet is a quick reference complete
with descriptions and examples.

Before you continue, read "How to use this manual" for the conventions and rules
used in this manual.

Make a PDF

If you'd like a PDF version of this manual, click the red Download the Search
Reference as PDF link below the table of contents on the left side of this page. A
PDF version of the manual is generated on the fly for you, and you can save it or
print it out to read later.

 How to use this manual

This manual serves as a reference guide for the Splunk user who is looking for a
catalog of the search commands with complete syntax, descriptions, and
examples for usage.

 Layout for each topic

Each search command topic contains the following headers: synopsis,
description, examples, and see also.

1

Synopsis
The synopsis includes a short description of each search command, the
complete syntax for each search command, and a description for each
argument. If the arguments have another hierarchy of options, each of
these sets of options follow the argument descriptions.

Required arguments
The list of required parameters and their syntax.

Optional arguments
The list of optional parameters and their syntax.

Description
The description includes details about how to use the search command.

Examples
This section lists examples of usage for the search command.

See also
This sections lists and links to all related or similar search commands.

 Conventions used to describe syntax

The syntax for each search command is defined under the "Synopsis". The
arguments are presented in the syntax in the order they are meant to be used.

 Conventions used to describe arguments

Arguments are either Required or Optional and are listed alphabetically under
their respective subheadings. For each argument, there is a Syntax and
Description part. The description includes usage information and defaults.

2

Search Reference Overview

 Search Command Cheat Sheet and Search
Language Quick Reference Card

The Search Command Cheat Sheet is a quick command reference complete with
descriptions and examples. The Search Command Cheat Sheet is also available
for download as an eight-page PDF file.

The Search Language Quick Reference Card, available only as a PDF file, is a
six-page reference card that provides fundamental search concepts, commands,
functions, and examples.

Note: In the examples on this page, a leading ellipsis (...) indicates that there is a
search before the pipe operator. A leading pipe | prevents the CLI or UI from
prepending the "search" operator on your search.

Answers

Have questions about search commands? Check out Splunk Answers to see
what questions and answers other Splunk users had about the search language.
Now, on to the cheat sheet!

 administrative

View information in the "audit" index. index=_audit | audit

Crawl root and home directories and add all possible
inputs found (adds configuration information to
"inputs.conf").

| crawl root="/;/Users/" |
input add

Display a chart with the span size of 1 day. | dbinspect index=_internal
span=1d

Return the values of "host" for events in the "_internal"
index.

| metadata type=hosts
index=_internal

Return typeahead information for sources in the
"_internal" index.

| typeahead prefix=source
count=10 index=_internal

 alerting

Send search results to the specified email. ... | sendemail
to="elvis@splunk.com"

3

 fields

 add

Save the running total of "count" in a field called
"total_count".

... | accum count AS
total_count

Add information about the search to each event. ... |addinfo

Search for "404" events and append the fields in each
event to the previous search results.

... | appendcols [search
404]

For each event where 'count' exists, compute the
difference between count and its previous value and
store the result in 'countdiff'.

... | delta count AS
countdiff

Extracts out values like "7/01", putting them into the
"monthday" attribute.

... | erex monthday
examples="7/01"

Set velocity to distance / time. ... | eval
velocity=distance/time

Extract field/value pairs and reload field extraction
settings from disk. ... | extract reload=true

Extract field/value pairs that are delimited by "|;", and
values of fields that are delimited by "=:".

... | extract
pairdelim="|;",
kvdelim="=:", auto=f

Add location information (based on IP address). ... | iplocation

Extract values from "eventtype.form" if the file exists. ... | kvform
field=eventtype

Extract the "COMMAND" field when it occurs in rows that
contain "splunkd".

... | multikv fields
COMMAND filter splunkd

Set range to "green" if the date_second is
between 1-30; "blue", if between 31-39; "red", if
between 40-59; and "gray", if no range
matches (for example, if date_second=0).

... | rangemap
field=date_second
green=1-30 blue=31-39
red=40-59 default=gray

Calculate the relevancy of the search and sort the results
in descending order.

disk error | relevancy |
sort -relevancy

Extract "from" and "to" fields using regular expressions. If
a raw event contains "From: Susan To: Bob", then
from=Susan and to=Bob.

... | rex field=_raw "From:
(?<from>.*) To: (?<to>.*)"

Extract the "author" field from XML or JSON formatted
data about books.

... | spath output=author
path=book{@author}

Add the field: "comboIP". Values of "comboIP" =
""sourceIP" + "/" + "destIP"".

... | strcat sourceIP "/"
destIP comboIP

Extract field/value pairs from XML formatted data.
"xmlkv" automatically extracts values between XML tags. ... | xmlkv

4

 convert

Convert every field value to a number value except for
values in the field "foo" (use the "none" argument to
specify fields to ignore).

... | convert auto(*)
none(foo)

Change all memory values in the "virt" field to Kilobytes. ... | convert memk(virt)

Change the sendmail syslog duration format
(D+HH:MM:SS) to seconds. For example, if
"delay="00:10:15"", the resulting value will be
"delay="615"".

... | convert
dur2sec(delay)

Convert values of the "duration" field into number value
by removing string values in the field value. For example,
if "duration="212 sec"", the resulting value will be
"duration="212"".

... | convert
rmunit(duration)

Separate the value of "foo" into multiple values. ... | makemv delim=":"
allowempty=t foo

For sendmail events, combine the values of the senders
field into a single value; then, display the top 10 values.

eventtype="sendmail" | nomv
senders | top senders

 filter

Keep the "host" and "ip" fields, and display them in the
order: "host", "ip". ... | fields + host, ip

Remove the "host" and "ip" fields. ... | fields - host, ip

 modify

Build a time series chart of web events by host and fill all
empty fields with NULL.

sourcetype="web" |
timechart count by host |
fillnull value=NULL

Rename the "_ip" field as "IPAddress". ... | rename _ip as
IPAddress

Change any host value that ends with "localhost" to
"localhost".

... | replace *localhost
with localhost in host

 read

There is a lookup table specified in a stanza name
'usertogroup' in transforms.conf. This lookup table
contains (at least) two fields, 'user' and 'group'. For each
event, we look up the value of the field 'local_user' in the
table and for any entries that matches, the value of the
'group' field in the lookup table will be written to the field
'user_group' in the event.

... | lookup usertogroup
user as local_user OUTPUT
group as user_group

5

 formatting

Show a summary of up to 5 lines for each search result. ... |abstract maxlines=5

Compare the "ip" values of the first and third search
results.

... | diff pos1=1 pos2=3
attribute=ip

Highlight the terms "login" and "logout". ... | highlight
login,logout

Displays an different icon for each eventtype. ... | iconify eventtype

Output the "_raw" field of your current search into "_xml". ... | outputtext

Anonymize the current search results. ... | scrub

Un-escape all XML characters. ... | xmlunescape

 index

 add

Add each source found by crawl in the default index with
automatic source classification (sourcetyping) | crawl | input add

 delete

Delete events from the "imap" index that contain the
word "invalid" index=imap invalid | delete

 summary

Put "download" events into an index named
"downloadcount".

eventtypetag="download" |
collect index=downloadcount

Find overlapping events in "summary". index=summary | overlap

Compute the necessary information to later do 'chart
avg(foo) by bar' on summary indexed results.

... | sichart avg(foo) by
bar

Compute the necessary information to later do 'rare foo
bar' on summary indexed results. ... | sirare foo bar

Compute the necessary information to later do 'stats
avg(foo) by bar' on summary indexed results

... | sistats avg(foo) by
bar

Compute the necessary information to later do 'timechart
avg(foo) by bar' on summary indexed results.

... | sitimechart avg(foo)
by bar

Compute the necessary information to later do 'top foo
bar' on summary indexed results. ... | sitop foo bar

6

 reporting

Calculate the sums of the numeric fields of each result,
and put the sums in the field "sum".

... | addtotals
fieldname=sum

Analyze the numerical fields to predict the value of
"is_activated".

... | af
classfield=is_activated

Return events with uncommon values. ... | anomalousvalue
action=filter pthresh=0.02

Return results associated with each other (that have at
least 3 references to each other). ... | associate supcnt=3

For each event, copy the 2nd, 3rd, 4th, and 5th previous
values of the 'count' field into the respective fields
'count_p2', 'count_p3', 'count_p4', and 'count_p5'.

... | autoregress count
p=2-5

Bucket search results into 10 bins, and return the count
of raw events for each bucket.

... | bucket size bins=10 |
stats count(_raw) by size

Return the average "thruput" of each "host" for each 5
minute time span.

... | bucket _time span=5m
| stats avg(thruput) by
_time host

Return the average (mean) "size" for each distinct "host". ... | chart avg(size) by
host

Return the the maximum "delay" by "size", where "size"
is broken down into a maximum of 10 equal sized
buckets.

... | chart max(delay) by
size bins=10

Return the ratio of the average (mean) "size" to the
maximum "delay" for each distinct "host" and "user" pair.

... | chart
eval(avg(size)/max(delay))
by host user

Return max(delay) for each value of foo split by the value
of bar.

... | chart max(delay) over
foo by bar

Return max(delay) for each value of foo. ... | chart max(delay) over
foo

Build a contingency table of "datafields" from all events.

... | contingency
datafield1 datafield2
maxrows=5 maxcols=5
usetotal=F

Calculate the co-occurrence correlation between all
fields. ... | correlate type=cocur

Return the number of events in the '_internal' index. | eventcount
index=_internal

Compute the overall average duration and add 'avgdur'
as a new field to each event where the 'duration' field
exists

... | eventstats
avg(duration) as avgdur

Make "_time" continuous with a span of 10 minutes. ... | makecontinuous _time
span=10m

7

Remove all outlying numerical values. ... | outlier

Return the least common values of the "url" field. ... | rare url

Remove duplicates of results with the same "host" value
and return the total count of the remaining results. ... | stats dc(host)

Return the average for each hour, of any unique field
that ends with the string "lay" (for example, delay,
xdelay, relay, etc).

... | stats avg(*lay) BY
date_hour

Search the access logs, and return the number of hits
from the top 100 values of "referer_domain".

sourcetype=access_combined
| top limit=100
referer_domain | stats
sum(count)

For each event, add a count field that represent the
number of event seen so far (including that event). i.e., 1
for the first event, 2 for the second, 3, 4 ... and so on

... | streamstats count

Graph the average "thruput" of hosts over time. ... | timechart span=5m
avg(thruput) by host

Create a timechart of average "cpu_seconds" by "host",
and remove data (outlying values) that may distort the
timechart's axis.

... | timechart
avg(cpu_seconds) by host |
outlier action=tf

Calculate the average value of "CPU" each minute for
each "host".

... | timechart span=1m
avg(CPU) by host

Create a timechart of the count of from "web" sources by
"host"

... | timechart count by
host

Compute the product of the average "CPU" and average
"MEM" each minute for each "host"

... | timechart span=1m
eval(avg(CPU) * avg(MEM))
by host

Return the 20 most common values of the "url" field. ... | top limit=20 url

Computes a 5 event simple moving average for field 'foo'
and write to new field 'smoothed_foo'

also computes N=10 exponential moving
average for field 'bar' and write to field
'ema10(bar)'.

... | trendline sma5(foo)
as smoothed_foo ema10(bar)

Reformat the search results.
... | timechart avg(delay)
by host | untable _time
host avg_delay

Reformat the search results. ... | xyseries delay
host_type host

8

 results

append

Append the current results with the tabular results of
"fubar".

... | chart count by bar |
append [search fubar |
chart count by baz]

Joins previous result set with results from 'search foo', on
the id field. ... | join id [search foo]

 filter

Return only anomalous
events. ... | anomalies

Remove duplicates of
results with the same host
value.

... | dedup host

Combine the values of "foo"
with ":" delimiter. ... | mvcombine delim=":" foo

Keep only search results
whose "_raw" field contains
IP addresses in the
non-routable class A
(10.0.0.0/8).

... | regex
_raw="(?<!\d)10.\d{1,3}\.\d{1,3}\.\d{1,3}(?!\d)"

Join results with itself on 'id'
field. ... | selfjoin id

For the current search,
keep only unique results. ... | uniq

Return "physicsobjs" events
with a speed is greater than
100.

sourcetype=physicsobjs | where distance/time >
100

 generate

All daily time ranges from oct 25 till today | gentimes start=10/25/07

Loads the events that were generated by the search job
with id=1233886270.2

| loadjob 1233886270.2
events=t

Create new events for each value of multi-value field,
"foo". ... | mvexpand foo

Run the "mysecurityquery" saved search. | savedsearch
mysecurityquery

9

 group

Cluster events together, sort them by their
"cluster_count" values, and then return the 20 largest
clusters (in data size).

... | cluster t=0.9
showcount=true | sort -
cluster_count | head 20

Group search results into 4 clusters based on the values
of the "date_hour" and "date_minute" fields.

... | kmeans k=4 date_hour
date_minute

Group search results that have the same "host" and
"cookie", occur within 30 seconds of each other, and do
not have a pause greater than 5 seconds between each
event into a transaction.

... | transaction host
cookie maxspan=30s
maxpause=5s

Force Splunk to apply event types that you have
configured (Splunk Web automatically does this when
you view the "eventtype" field).

... | typer

 order

Return the first 20 results. ... | head 20

Reverse the order of a result set. ... | reverse

Sort results by "ip" value in ascending order and then by
"url" value in descending order. ... | sort ip, -url

Return the last 20 results (in reverse order). ... | tail 20

 read

Display events from the file "messages.1" as if the
events were indexed in Splunk. | file /var/log/messages.1

Read in results from the CSV file:
"$SPLUNK_HOME/var/run/splunk/all.csv", keep any that
contain the string "error", and save the results to the file:
"$SPLUNK_HOME/var/run/splunk/error.csv"

| inputcsv all.csv | search
error | outputcsv
errors.csv

Read in "users.csv" lookup file (under
$SPLUNK_HOME/etc/system/lookups or
$SPLUNK_HOME/etc/apps/*/lookups).

| inputlookup users.csv

 write

Output search results to the CSV file 'mysearch.csv'. ... | outputcsv mysearch

Write to "users.csv" lookup file (under
$SPLUNK_HOME/etc/system/lookups or
$SPLUNK_HOME/etc/apps/*/lookups).

| outputlookup users.csv

 search

10

 external

Run the Python script "myscript" with arguments, myarg1
and myarg2; then, email the results.

... | script python
myscript myarg1 myarg2 |
sendemail
to=david@splunk.com

 search

Keep only search results that have the specified "src" or
"dst" values.

src="10.9.165.*" OR
dst="10.9.165.8"

 subsearch

Get top 2 results and create a search from their host,
source and sourcetype, resulting in a single search result
with a _query field: _query=(("host::mylaptop" AND
"source::syslog.log" AND "sourcetype::syslog") OR (
"host::bobslaptop" AND "source::bob-syslog.log" AND
"sourcetype::syslog"))

... | head 2 | fields
source, sourcetype, host |
format

Search the time range of each previous result for
"failure".

... | localize maxpause=5m
| map search="search
failure
starttimeu=$starttime$
endtimeu=$endtime$"

Return values of "URL" that contain the string "404" or
"303" but not both.

| set diff [search 404 |
fields url] [search 303 |
fields url]

 miscellaneous

The iplocation command in this case will never be run on
remote peers. All events from remote peers from the
initial search for the terms FOO and BAR will be
forwarded to the search head where the iplocation
command will be run.

FOO BAR | localop |
iplocation

 Popular search commands

The following tables lists the more frequently used Splunk search commands.
Some of these commands share functions -- you can see a list of these functions
with descriptions and examples on the following pages: Functions for eval and
where and Functions for stats, chart, and timechart.

Command Alias(es) Description See also

bucket
bin,
discretize

Puts continuous numerical values into
discrete sets. chart, timechart

11

chart

Returns results in a tabular output for
charting. See also, Functions for
stats, chart, and timechart.

bucket, sichart,
timechart

dedup
Removes subsequent results that match
a specified criteria. uniq

eval

Calculates an expression and puts the
value into a field. See also, Functions
for eval and where.

where

extract kv Extracts field-value pairs from search
results.

kvform, multikv,
xmlkv, rex

fields Removes fields from search results.

head
Returns the first number n of specified
results. reverse, tail

lookup Explicitly invokes field value lookups.

multikv
Extracts field-values from table-formatted
events.

rangemap
Sets RANGE field to the name of the
ranges that match.

rare
Displays the least common values of a
field.

sirare, stats,
top

rename
Renames a specified field; wildcards can
be used to specify multiple fields.

replace
Replaces values of specified fields with a
specified new value.

rex
Specify a Perl regular expression named
groups to extract fields while you search.

extract, kvform,
multikv, xmlkv,
regex

search
Searches Splunk indexes for matching
events.

spath
Extracts key-value pairs from XML or
JSON formats.

extract, kvform,
multikv, rex,
xmlkv

sort
Sorts search results by the specified
fields. reverse

stats

Provides statistics, grouped optionally by
fields. See also, Functions for stats,
chart, and timechart.

eventstats, top,
rare

tail
Returns the last number n of specified
results. head, reverse

timechart Create a time series chart and
corresponding table of statistics. See

chart, bucket

12

also, Functions for stats, chart, and
timechart.

top common Displays the most common values of a
field. rare, stats

transaction transam Groups search results into transactions.

where

Performs arbitrary filtering on your data.
See also, Functions for eval and
where.

eval

xmlkv Extracts XML key-value pairs.
extract, kvform,
multikv, rex,
spath

Answers

Have questions about search commands? Check out Splunk Answers to see
what questions and answers other Splunk users had about the search language.

 Splunk for SQL users

This is not a perfect mapping between SQL and Splunk search commands, but if
you are familiar with SQL, this quick comparison might be helpful as a jump-start
into using Splunk.

 Concepts

In database terms, Splunk is a distributed, non-relational, semi-structured
database with an implicit time dimension. Splunk is not a database in the
normative sense -- relational databases require that all table columns be defined
up-front and they don't automatically scale by just plugging in new hardware --
but there are analogs to many of the concepts in the database world.

DB Concept Splunk
Concept Notes

SQL query Splunk
search

A Splunk search retrieves indexed data and can perform
transforming and reporting operations. Results from one
search can be "piped", or transferred, from command to
command, to filter, modify, reorder, and group your results.

table/view search
results

Search results can be thought of as a database view, a
dynamically generated table of rows, with columns.

13

index index

All values and fields are indexed in Splunk, so there is no
need to manually add, update, drop, or even think about
indexing columns. Everything can be quickly retrieved
automatically.

row result/event

A result in Splunk is a list of field (i.e., column) values,
corresponding to a table row. An event is a result that has a
timestamp and raw text. Typically in event is a record from a
log file, such as:

173.26.34.223 - - [01/Jul/2009:12:05:27
-0700] "GET /trade/app?action=logout
HTTP/1.1" 200 2953

column field

Fields in Splunk are dynamically returned from a search,
meaning that one search might return a set of fields, while
another search might return another set. After teaching
Splunk how to extract out more fields from the raw underlying
data, the same search will return more fields that it previously
did. Fields in Splunk are not tied to a datatype.

database/schema index/app

In Splunk, an index is a collection of data, somewhat like a
database has a collection of tables. Domain knowledge of
that data, how to extract it, what reports to run, etc, are
stored in a Splunk app.

 From SQL to Splunk

The examples below use the value of the Splunk field "source" as a proxy for
"table". In Splunk, "source" is the name of the file, stream, or other input from
which a particular piece of data originates, for example /var/log/messages or
UDP:514.

When translating from any language to another, often the translation is longer
because of idioms in the original language. Some of the Splunk search examples
shown below could be more concise, but for parallelism and clarity, the table and
field names are kept the same from the sql. Also, searches rarely need the
FIELDS command to filter out columns as the user interface provides a more
convenient method; and you never have to use "AND" in boolean searches, as
they are implied between terms.

SQL
command SQL example Splunk example

SELECT * SELECT * source=mytable

14

FROM mytable

WHERE

SELECT *

FROM mytable

WHERE mycolumn=5

source=mytable
mycolumn=5

SELECT
SELECT mycolumn1, mycolumn2

FROM mytable

source=mytable

| FIELDS mycolumn1,
mycolumn2

AND/OR

SELECT *

FROM mytable

WHERE (mycolumn1="true" OR
mycolumn2="red") AND
mycolumn3="blue"

source=mytable

AND
(mycolumn1="true" OR
mycolumn2="red")

AND
mycolumn3="blue"

AS (alias)
SELECT mycolumn AS column_alias

FROM mytable

source=mytable

| RENAME mycolumn
as column_alias

| FIELDS column_alias

BETWEEN

SELECT *

FROM mytable

WHERE mycolumn

BETWEEN 1 AND 5

source=mytable
mycolumn<=1
mycolumn>=5

GROUP BY

SELECT mycolumn, avg(mycolumn)

FROM mytable

WHERE mycolumn=value

GROUP BY mycolumn

source=mytable
mycolumn=value

| STATS
avg(mycolumn) BY
mycolumn

| FIELDS mycolumn,
avg(mycolumn)

HAVING SELECT mycolumn, avg(mycolumn)

15

FROM mytable

WHERE mycolumn=value

GROUP BY mycolumn

HAVING avg(mycolumn)=value

source=mytable
mycolumn=value

| STATS
avg(mycolumn) BY
mycolumn

| SEARCH
avg(mycolumn)=value

| FIELDS mycolumn,
avg(mycolumn)

LIKE

SELECT *

FROM mytable

WHERE mycolumn LIKE "%some text%"

source=mytable
mycolumn="*some
text*"

Note: The most
common search usage
in Splunk is actually
something that is
nearly impossible in
SQL -- to search all
fields for a substring.
The following search
will return all rows that
contain "some text"
anywhere:

source=mytable "some
text"

ORDER BY

SELECT *

FROM mytable

ORDER BY mycolumn desc

source=mytable

| SORT -mycolumn

SELECT
DISTINCT

SELECT DISTINCT mycolumn1, mycolumn2

FROM mytable

source=mytable

| DEDUP mycolumn1

| FIELDS mycolumn1,
mycolumn2

SELECT TOP SELECT TOP 5 mycolumn1, mycolumn2 source=mytable

16

FROM mytable | TOP mycolumn1,
mycolumn2

INNER JOIN

SELECT *

FROM mytable1

INNER JOIN mytable2

ON
mytable1.mycolumn=mytable2.mycolumn

source=mytable1

| JOIN type=inner
mycolumn [SEARCH
source=mytable2]

Note: There are two
other methods to do a
join:

Use the lookup
command to add
fields from an
external table:

•

... | LOOKUP
myvaluelookup
mycolumn OUTPUT
myoutputcolumn

Use a
subsearch:

•

source=mytable1 [

SEARCH
source=mytable2
mycolumn2=myvalue

| FIELDS mycolumn2

]

LEFT
(OUTER)
JOIN

SELECT *

FROM mytable1

LEFT JOIN mytable2

ON
mytable1.mycolumn=mytable2.mycolumn

source=mytable1

| JOIN type=left
mycolumn [SEARCH
source=mytable2]

17

SELECT
INTO

SELECT *

INTO new_mytable IN mydb2

FROM old_mytable

source=old_mytable

| EVAL
source=new_mytable

| COLLECT
index=mydb2

Note: COLLECT is
typically used to store
expensively calculated
fields back into Splunk
so that future access is
much faster. This
current example is
atypical but shown for
comparison with SQL's
command. source will
be renamed
orig_source

TRUNCATE
TABLE TRUNCATE TABLE mytable

source=mytable

| DELETE

INSERT
INTO

INSERT INTO mytable

VALUES (value1, value2, value3,....)

Note: see SELECT
INTO. Individual
records are not added
via the search
language, but can be
added via the API if
need be.

UNION

SELECT mycolumn

FROM mytable1

UNION

SELECT mycolumn FROM mytable2

source=mytable1

| APPEND [SEARCH
source=mytable2]

| DEDUP mycolumn

UNION ALL SELECT *

FROM mytable1

UNION ALL

source=mytable1

| APPEND [SEARCH
source=mytable2]

18

SELECT * FROM mytable2

DELETE
DELETE FROM mytable

WHERE mycolumn=5

source=mytable1
mycolumn=5

| DELETE

UPDATE

UPDATE mytable

SET column1=value, column2=value,...

WHERE some_column=some_value

Note: There are a few
things to think about
when updating records
in Splunk. First, you
can just add the new
values into Splunk (see
INSERT INTO) and not
worry about deleting
the old values, because
Splunk always returns
the most recent results
first. Second, on
retrieval, you can
always de-duplicate the
results to ensure only
the latest values are
used (see SELECT
DISTINCT). Finally,
you can actually delete
the old records (see
DELETE).

19

Search Commands and Functions

 All search commands

The table below lists all search commands with a short description and links to
their individual reference pages. For a quick guide with examples for use of these
search commands, refer to the Search cheat sheet.

Some of these commands share functions -- you can see a list of these functions
with descriptions and examples on the following pages: Functions for eval and
where and Functions for stats, chart, and timechart.

Command Alias(es) Description See also

abstract excerpt Produces a summary of each
search result. highlight

accum
Keeps a running total of the
specified numeric field.

autoregress, delta,
trendline,
streamstats

addcoltotals
Computes an event that
contains sum of all numeric
fields for previous events.

addtotals, stats

addinfo
Add fields that contain common
information about the current
search.

search

addtotals
Computes the sum of all
numeric fields for each result. addcoltotals, stats

analyzefields
Analyze numerical fields for
their ability to predict another
discrete field.

anomalousvalue

anomalies
Computes an "unexpectedness"
score for an event.

anomalousvalue,
cluster, kmeans,
outlier

anomalousvalue
Finds and summarizes
irregular, or uncommon, search
results.

analyzefields,
anomalies, cluster,
kmeans, outlier

append
Appends subsearch results to
current results.

appendcols,
appendcsv,
appendlookup, join,
set

appendcols Appends the fields of the
subsearch results to current

append, appendcsv,
join, set

20

results, first results to first
result, second to second, etc.

appendpipe
Appends the result of the
subpipeline applied to the
current result set to results.

append, appendcols,
join, set

associate
Identifies correlations between
fields.

correlate,
contingency

audit
Returns audit trail information
that is stored in the local audit
index.

autoregress
Sets up data for calculating the
moving average.

accum, autoregress,
delta, trendline,
streamstats

bucket bin, discretize Puts continuous numerical
values into discrete sets. chart, timechart

bucketdir

Replaces a field value with
higher-level grouping, such as
replacing filenames with
directories.

cluster, dedup

chart

Returns results in a tabular
output for charting. See also,
Functions for stats, chart,
and timechart.

bucket, sichart,
timechart

cluster sic Clusters similar events
together.

anomalies,
anomalousvalue,
cluster, kmeans,
outlier

collect stash Puts search results into a
summary index. overlap

concurrency
Uses a duration field to find the
number of "concurrent" events
for each event.

timechart

contingency
counttable,
ctable

Builds a contingency table for
two fields.

associate,
correlate

convert
Converts field values into
numerical values. eval

correlate
Calculates the correlation
between different fields.

associate,
contingency

crawl
Crawls the filesystem for new
sources to index.

dbinspect
Returns information about the
specified index.

dedup uniq

21

Removes subsequent results
that match a specified criteria.

delete
Delete specific events or search
results.

delta
Computes the difference in field
value between nearby results.

accum, autoregress,
trendline,
streamstats

diff
Returns the difference between
two search results.

dispatch
Encapsulates long running,
streaming reports.

erex

Allows you to specify example
or counter example values to
automatically extract fields that
have similar values.

extract, kvform,
multikv, regex, rex,
xmlkv

eval

Calculates an expression and
puts the value into a field. See
also, Functions for eval
and where.

where

eventstats
Adds summary statistics to all
search results. stats

extract kv Extracts field-value pairs from
search results.

kvform, multikv,
xmlkv, rex

fieldformat
Expresses how to render a field
at output time without changing
the underlying value.

eval, where

fields
Removes fields from search
results.

file
This command is no longer
supported. See inputcsv.

filldown
Replaces NULL values with the
last non-NULL value. fillnull

fillnull
Replaces null values with a
specified value.

format
Takes the results of a
subsearch and formats them
into a single result.

gauge
Transforms results into a format
suitable for display by the
Gauge chart types.

gentimes Generates time-range results.

head reverse, tail

22

Returns the first number n of
specified results.

highlight
Causes Splunk Web to highlight
specified terms.

history
Returns a history of searches
formatted as an events list or as
a table.

search

iconify
Causes Splunk Web to make a
unique icon for each value of
the fields listed.

highlight

input
Adds sources to Splunk or
disables sources from being
processed by Splunk.

inputcsv
Loads search results from the
specified CSV file. loadjob, outputcsv

inputlookup
Loads search results from a
specified static lookup table.

inputcsv, join,
lookup, outputlookup

iplocation
Extracts location information
from IP addresses.

join
SQL-like joining of results from
the main results pipeline with
the results from the subpipeline.

selfjoin,
appendcols

kmeans
Performs k-means clustering on
selected fields.

anomalies,
anomalousvalue,
cluster, outlier

kvform
Extracts values from search
results, using a form template.

extract, kvform,
multikv, xmlkv, rex

loadjob
Loads search results from a
specified CSV file. inputcsv

localize
Returns a list of the time ranges
in which the search results were
found.

map, transaction

lookup
Explicitly invokes field value
lookups.

makecontinuous
Makes a field that is supposed
to be the x-axis continuous
(invoked by chart/timechart)

chart, timechart

makemv
Change a specified field into a
multivalued field during a
search.

mvcombine,
mvexpand, nomv

map
A looping operator, performs a
search over each search result.

23

metadata

Returns a list of source,
sourcetypes, or hosts from a
specified index or distributed
search peer.

dbinspect

metasearch
Retrieves event metadata from
indexes based on terms in the
logical expression.

metadata, search

multikv
Extracts field-values from
table-formatted events.

mvcombine

Combines events in search
results that have a single
differing field value into one
result with a multivalue field of
the differing field.

mvexpand, makemv,
nomv

mvexpand

Expands the values of a
multivalue field nto separate
events for each value of the
multivalue field.

mvcombine, makemv,
nomv

nomv

Changes a specified
multivalued field into a
single-value field at search
time.

makemv, mvcombine,
mvexpand

outlier outlierfilter Removes outlying numerical
values.

anomalies,
anomalousvalue,
cluster, kmeans

outputcsv
Outputs search results to a
specified CSV file.

inputcsv,
outputtext

outputlookup
Writes search results to the
specified static lookup table.

inputlookup, lookup,
outputcsv,
outputlookup

outputtext
Ouputs the raw text field (_raw)
of results into the _xml
field.

outputtext

overlap
Finds events in a summary
index that overlap in time or
have missed events.

collect

predict
Enables you to use time series
algorithms to predict future
values of fields.

x11

rangemap
Sets RANGE field to the name
of the ranges that match.

rare
Displays the least common
values of a field. sirare, stats, top

24

regex
Removes results that do not
match the specified regular
expression.

rex, search

relevancy
Calculates how well the event
matches the query.

reltime

Converts the difference
between 'now' and '_time' to a
human-readable value and
adds adds this value to the
field, 'reltime', in your search
results.

convert

rename
Renames a specified field;
wildcards can be used to
specify multiple fields.

replace
Replaces values of specified
fields with a specified new
value.

rest
Access a REST endpoint and
display the returned entities as
search results.

reverse
Reverses the order of the
results. head, sort, tail

rex
Specify a Perl regular
expression named groups to
extract fields while you search.

extract, kvform,
multikv, xmlkv,
regex

rtorder

Buffers events from real-time
search to emit them in
ascending time order when
possible.

run See script.

savedsearch
macro,
savedsplunk

Returns the search results of a
saved search.

script run Runs an external Perl or Python
script as part of your search.

scrub Anonymizes the search results.

search
Searches Splunk indexes for
matching events.

searchtxn
Finds transaction events within
specified search constraints. transaction

selfjoin Joins results with itself. join

sendemail
Emails search results to a
specified email address.

25

set
Performs set operations on
subsearches.

setfields
Sets the field values for all
results to a common value.

eval, fillnull,
rename

sichart
Summary indexing version of
chart.

chart, sitimechart,
timechart

sirare
Summary indexing version of
rare. rare

sistats
Summary indexing version of
stats. stats

sitimechart
Summary indexing version of
timechart. chart, sichart, timechart

sitop
Summary indexing version of
top. top

sort
Sorts search results by the
specified fields. reverse

spath

Provides a straightforward
means for extracting fields from
structured data formats, XML
and JSON.

xpath

stats

Provides statistics, grouped
optionally by fields. See also,
Functions for stats, chart,
and timechart.

eventstats, top,
rare

strcat Concatenates string values.

streamstats
Adds summary statistics to all
search results in a streaming
manner.

eventstats, stats

table
Creates a table using the
specified fields. fields

tags
Annotates specified fields in
your search results with tags. eval

tail
Returns the last number n of
specified results. head, reverse

timechart

Create a time series chart and
corresponding table of
statistics. See also, Functions
for stats, chart, and
timechart.

chart, bucket

top common Displays the most common
values of a field. rare, stats

26

transaction transam Groups search results into
transactions.

transpose
Reformats rows of search
results as columns.

trendline
Computes moving averages of
fields. timechart

typeahead
Returns typeahead information
on a specified prefix.

typelearner
Generates suggested
eventtypes. typer

typer
Calculates the eventtypes for
the search results. typelearner

uniq
Removes any search that is an
exact duplicate with a previous
result.

dedup

untable

Converts results from a tabular
format to a format similar to
stats output. Inverse of
xyseries and maketable.

where

Performs arbitrary filtering on
your data. See also,
Functions for eval and
where.

eval

x11
Enables you to determine the
trend in your data by removing
the seasonal pattern.

predict

xmlkv Extracts XML key-value pairs. extract, kvform,
multikv, rex

xmlunescape Unescapes XML.

xpath Redefines the XML path.

xyseries
Converts results into a format
suitable for graphing.

 Functions for eval and where

These are functions that you can use with the eval and where commands and
as part of eval expressions.

Function Description Example(s)
abs(X) This function takes a number

X and returns its absolute
This example returns the absnum, whose values are the absolute values of the numeric
field number:

27

value. ... | eval absnum=abs(number)

case(X,"Y",...)

This function takes pairs of
arguments X and Y. X
arguments are Boolean
expressions that, when
evaluated to TRUE, return
the corresponding Y
argument. The function
defaults to NULL if none are
true.

This example returns descriptions for the corresponding http status code:

... | eval description=case(error == 404, "Not found", error ==
500, "Internal Server Error", error == 200, "OK")

ceil(X),
ceiling(X)

This function returns the
ceiling of a number X.

This example returns n=2:

... | eval n=ceil(1.9)

cidrmatch("X",Y)

This function identifies IP
addresses that belong to a
particular subnet. The
function uses two arguments:
the first is the CIDR subnet,
which is contained in quotes;
the second is the IP address
to match, which may be
values in a field.

This example returns a field, addy, whose values are the IP addresses in the
field ip that match the subnet:

... | eval addy=cidrmatch("123.132.32.0/25",ip)

coalesce(X,...)

This function takes an
arbitrary number of
arguments and returns the
first value that is not null.

Let's say you have a set of events where the IP address is extracted to either clientip
or ipaddress. This example defines a new field called ip, that takes the
value of either clientip or </code>ipaddress</code>, depending on which
is not NULL (exists in that event):

... | eval ip=coalesce(clientip,ipaddress)

commands(X)

This function takes a search
string, or field that contains a
search string, X and returns a
multivalued field containing a
list of the commands used in
X. (This is generally not
recommended for use except
for analysis of audit.log
events.)

... | eval x=commands("search foo | stats count | sort count")

returns a multivalue field x, that contains 'search', 'stats', and 'sort'.

exact(X)

This function evaluates an
expression X using double
precision floating point
arithmetic.

... | eval n=exact(3.14 * num)

exp(X)
This function takes a number
X and returns eX.

This example returns y=e3:

... | eval y=exp(3)

floor(X) This function returns the floor
of a number X.

This example returns 1:

28

... | eval n=floor(1.9)

if(X,Y,Z)

This function takes three
arguments. The first
argument X is a Boolean
expression. If X evaluates to
TRUE, the result is the
second argument Y.
Optionally, if X evaluates to
FALSE, the result evaluates
to the third argument Z.

This example looks at the values of error and returns err=OK if error=200, otherwise
returns err=Error:

... | eval err=if(error == 200, "OK", "Error")

isbool(X)
This function takes one
argument X and returns
TRUE if X is Boolean.

... | eval n=if(isbool(field),"yes","no")

or

... | where isbool(field)

isint(X)
This function takes one
argument X and returns
TRUE if X is an integer.

... | eval n=isint(field)

or

... | where isint(field)

isnotnull(X)

This function takes one
argument X and returns
TRUE if X is not NULL. This
is a useful check for whether
or not a field (X) contains a
value.

... | eval n=if(isnotnull(field),"yes","no")

or

... | where isnotnull(field)

isnull(X)
This function takes one
argument X and returns
TRUE if X is NULL.

... | eval n=if(isnull(field),"yes","no")

or

... | where isnull(field)

isnum(X)
This function takes one
argument X and returns
TRUE if X is a number.

... | eval n=if(isnum(field),"yes","no")

or

... | where isnum(field)

isstr()
This function takes one
argument X and returns
TRUE if X is a string.

... | eval n=if(isstr(field),"yes","no")

or

... | where isstr(field)

len(X)
This function returns the
character length of a string X. ... | eval n=len(field)

like(X,"Y") This example returns islike=TRUE if the field value starts with foo:

29

This function takes two
arguments, a field X and a
quoted string Y, and returns
TRUE if and only if the first
argument is like the SQLite
pattern in Y.

... | eval islike=like(field, "foo%")

or

... | where like(field, "foo%")

ln(X)
This function takes a number
X and returns its natural log.

This example returns the natural log of the values of bytes:

... | eval lnBytes=ln(bytes)

log(X,Y)

This function takes either one
or two numeric arguments
and returns the log of the first
argument X using the second
argument Y as the base. If
the second argument Y is
omitted, this function
evaluates the log of number
X with base 10.

... | eval num=log(number,2)

lower(X)

This function takes one string
argument and returns the
lowercase version. The
upper() function also exists
for returning the uppercase
version.

This example returns the value provided by the field username in lowercase.

... | eval username=lower(username)

ltrim(X,Y)

This function takes one or
two string arguments X and Y
and returns X with the
characters in Y trimmed from
the left side. If Y is not
specified, spaces and tabs
are trimmed.

This example returns x="abcZZ":

... | eval x=ltrim(" ZZZZabcZZ ", " Z")

match(X,Y)

This function compares the
regex string Y to the value of
X and returns a Boolean
value; it returns T (true) if X
matches the pattern defined
by Y.

This example returns true IF AND ONLY IF field matches the basic pattern of an IP
address. Note that the example uses ^ and $ to perform a full match.

... | eval n=match(field, "^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$")

max(X,...)

This function takes an
arbitrary number of
arguments X, that is numbers
or strings, and returns the
max; strings are greater than
numbers.

This example returns either "foo" or field, depending on the value of field:

... | eval n=max(1, 3, 6, 7, "foo", field)

md5(X)
This function computes and
returns the MD5 hash of a
string value X.

... | eval n=md5(field)

min(X,...) This example returns 1:

30

This function takes an
arbitrary number of
arguments X, that is numbers
or strings, and returns the
min; strings are greater than
numbers.

... | eval n=min(1, 3, 6, 7, "foo", field)

mvappend(X,"Y",Z)

This function takes three
arguments, fields X and Z
and a quoted string Y, and
returns a multivalued result.
The value of Y and the
values of the field Z are
appended to the values of
field X. The fields X and Z
can be either multi or single
valued fields.

mvcount(X)

This function takes an field X
and returns the number of
values of that field if the field
is multivalued, 1 if the field is
single valued, and NULL
otherwise.

... | eval n=mvcount(multifield)

mvfilter(X)

This function filters a
multi-valued field based on
an arbitrary Boolean
expression X. The Boolean
expression X can reference
ONLY ONE field at a time.

Note:This function will
return NULL values of
the field x as well. If you
don't want the NULL
values, use the
expression:
mvfilter(x!=NULL).

This example returns all values of the field email that end in .net or .org:

... | eval n=mvfilter(match(email, "\.net$") OR match(email,
"\.org$"))

mvfind(X,"Y")

Appears in 4.2.2. This
function tries to find a value
in multivalued field X that
matches the regular
expression Y. If a match
exists, the index of the first
matching value is returned
(beginning with zero). If no
values match, NULL is
returned.

... | eval n=mvfind(mymvfield, "err\d+")

mvindex(X,Y,Z) Since indexes start at zero, this example returns the third value in "multifield", if it exists:

31

This function takes two or
three arguments, field X and
numbers Y and Z, and
returns a subset of the
multivalued field using the
indexes provided.

For mvindex(mvfield,
startindex,

[endindex]), endindex
is inclusive and optional;
both startindex and
endindex can be
negative, where -1 is the
last element. If endindex
is not specified, it
returns just the value at
startindex. If the indexes
are out of range or
invalid, the result is
NULL.

... | eval n=mvindex(multifield, 2)

mvjoin(X,Y)

This function takes two
arguments, multi-valued field
X and string delimiter Y, and
joins the individual values of
X using Y.

This example joins together the individual values of "foo" using a semicolon as the
delimiter:

... | eval n=mvjoin(foo, ";")

mvrange(X,Y,Z)

This function creates a
multivalue field for a range of
numbers. It takes up to three
arguments: a starting number
X, an ending number Y
(exclusive), and an optional
step increment Z. If the
increment is a timespan
(such as '7'd), the starting
and ending numvers are
treated as epoch times.

This example returns a multivalue field with the values 1, 3, 5, 7, 9.

... | eval mv=mvrange(1,11,2)

mvzip(X,Y)

This function takes two
multivalue fields, X and Y,
and combines them by
stitching together the first
value of X with the first value
of field Y, then the second
with the second, etc. Similar
to Python's zip command.

... | eval n=server=mvzip(hosts,ports)

now()

32

This function takes no
arguments and returns the
time that the search was
started. The time is
represented in Unix time or
seconds since epoch.

null()

This function takes no
arguments and returns NULL.
The evaluation engine uses
NULL to represent "no
value"; setting a field to NULL
clears its value.

nullif(X,Y)

This function takes two
arguments, fields X and Y,
and returns the X if the
arguments are different. It
returns NULL, otherwise.

... | eval n=nullif(fieldA,fieldB)

pi()

This function takes no
arguments and returns the
constant pi to 11 digits of
precision.

pow(X,Y)
This function takes two
numeric arguments X and Y
and returns XY.

random()

This function takes no
arguments and returns a
pseudo-random number
ranging from zero to 231-1,
for example:
0…2147483647

relative_time(X,Y)

This function takes an
epochtime time, X, as the first
argument and a relative time
specifier, Y, as the second
argument and returns the
epochtime value of Y applied
to X.

... | eval n=relative_time(now(), "-1d@d")

replace(X,Y,Z)

This function returns a string
formed by substituting string
Z for every occurrence of
regex string Y in string X. The
third argument Z can also
reference groups that are
matched in the regex.

This example returns date with the month and day numbers switched, so if the input was
1/12/2009 the return value would be 12/1/2009:

... | eval n=replace(date, "^(\d{1,2})/(\d{1,2})/", "\2/\1/")

round(X,Y) This function takes one or
two numeric arguments X

This example returns n=4:

33

and Y, returning X rounded to
the amount of decimal places
specified by Y. The default is
to round to an integer.

... | eval n=round(3.5)

This example returns n=2.56:

... | eval n=round(2.555, 2)

rtrim(X,Y)

This function takes one or
two string arguments X and Y
and returns X with the
characters in Y trimmed from
the right side. If Y is not
specified, spaces and tabs
are trimmed.

This example returns n="ZZZZabc":

... | eval n=rtrim(" ZZZZabcZZ ", " Z")

searchmatch(X)

This function takes one
argument X, which is a
search string. The function
returns true IF AND ONLY IF
the event matches the search
string.

... | eval n=searchmatch("foo AND bar")

sigfig(X)

This function takes one
argument X, a number, and
rounds that number to the
appropriate number of
significant figures.

1.00*1111 = 1111, but

... | eval n=sigfig(1.00*1111)

returns n=1110.

spath(X,Y)

This function takes two
arguments: an input source
field X and an spath
expression Y, that is the XML
or JSON formatted location
path to the value that you
want to extract from X. If Y is
a literal string, it needs
quotes, spath(X,"Y"). If
Y is a field name (with
values that are the
location paths), it
doesn't need quotes.
This may result in a
multivalued field. Read
more about the spath
search command.

This example returns the values of locDesc elements:

... | eval locDesc=spath(_raw,
"vendorProductSet.product.desc.locDesc")

This example returns the hashtags from a twitter event: index=twitter |
eval output=spath(_raw, "entities.hashtags")

split(X,"Y")

This function takes two
arguments, field X and
delimiting character Y. It
splits the value(s) of X on the
delimiter Y and returns X as a
multi-valued field.

... | eval n=split(foo, ";")

34

sqrt(X)
This function takes one
numeric argument X and
returns its square root.

This example returns 3:

... | eval n=sqrt(9)

strftime(X,Y)

This function takes an
epochtime value, X, as the
first argument and renders it
as a string using the format
specified by Y. For a list and
descriptions of format
options, refer to the topic
"Common time format
variables".

This example returns the hour and minute from the _time field:

... | eval n=strftime(_time, "%H:%M")

strptime(X,Y)

This function takes a time
represented by a string, X,
and parses it using the format
specified by Y. For a list and
descriptions of format
options, refer to the topic
"Common time format
variables".

This example returns the hour and minute from the timeStr field:

... | eval n=strptime(timeStr, "%H:%M")

substr(X,Y,Z)

This function takes either two
or three arguments, where X
is a string and Y and Z are
numeric. It returns a
substring of X, starting at the
index specified by Y with the
number of characters
specified by Z. If Z is not
given, it returns the rest of
the string.

The indexes follow
SQLite semantics; they
start at 1. Negative
indexes can be used to
indicate a start from the
end of the string.

This example concatenates "str" and "ing" together, returning "string":

... | eval n=substr("string", 1, 3) + substr("string", -3)

time()

This function returns the
wall-clock time with
microsecond resolution. The
value of time() will be
different for each event
based on when that event
was processed by the eval
command.

tonumber("X",Y) This example returns "164":

35

This function converts the
input string X to a number,
where Y is optional and used
to define the base of the
number to convert to. Y can
be 2..36, and defaults to 10.
If it cannot parse the input to
a number, the function
returns NULL.

... | eval n=tonumber("0A4",16)

tostring(X,Y)

This function converts the
input value to a string. If the
input value is a number, it
reformats it as a string. If the
input value is a Boolean
value, it returns the
corresponding string value,
"True" or "False".

This function requires at
least one argument X; if
X is a number, the
second argument Y is
optional and can be
"hex" "commas" or
"duration":

tostring(X,"hex")

converts X to
hexadecimal.

•

tostring(X,"commas")

formats X with
commas and, if
the number
includes
decimals, rounds
to nearest two
decimal places.

•

tostring(X,"duration")

converts seconds
X to readable
time format
HH:MM:SS.

•

This example returns "True 0xF 12,345.68":

... | eval n=tostring(1==1) + " " + tostring(15, "hex") + " " +
tostring(12345.6789, "commas")

This example returns foo=615 and foo2=00:10:15: ... | eval foo=615 |
eval foo2 = tostring(foo, "duration")

trim(X,Y) This function takes one or
two string arguments X and Y
and returns X with the
characters in Y trimmed from

This example returns "abc":

... | eval n=trim(" ZZZZabcZZ ", " Z")

36

both sides. If Y is not
specified, spaces and tabs
are trimmed.

typeof(X)
This function takes one
argument and returns a string
representation of its type.

This example returns "NumberStringBoolInvalid":

... | eval n=typeof(12) + typeof("string") + typeof(1==2) +
typeof(badfield)

upper(X)

This function takes one string
argument and returns the
uppercase version. The
lower() function also exists
for returning the lowercase
version.

This example returns the value provided by the field username in uppercase.

... | eval n=upper(username)

urldecode(X)

This function takes one URL
string argument X and
returns the unescaped or
decoded URL string.

This example returns "http://www.splunk.com/download?r=header":

... | eval
n=urldecode("http%3A%2F%2Fwww.splunk.com%2Fdownload%3Fr%3Dheader")

validate(X,Y,...)

This function takes pairs of
arguments, Boolean
expressions X and strings Y.
The function returns the
string Y corresponding to the
first expression X that
evaluates to False and
defaults to NULL if all are
True.

This example runs a simple check for valid ports:

... | eval n=validate(isint(port), "ERROR: Port is not an integer",
port >= 1 AND port <= 65535, "ERROR: Port is out of range")

 Functions for stats, chart, and timechart

These are statistical functions that you can use with the chart, stats, and
timechart commands.

Functions that are relevant for stats are also relevant for eventstats and
streamstats.

•

Functions that are relevant for chart, stats, and timechart are also relevant
for their respective summary indexing counterparts: sichart, sistats, and
sitimechart.

•

Functions that are relevant for sparklines will say as much. Note that
sparklines apply only to chart and stats.

•

Function Description Command(s) Example(s)
avg(X) This function returns

the average of the
values of field X. See

chart, stats,
timechart,
sparkline()

This examples returns the
average response time:

37

also, mean(X). avg(responseTime)

c(X) | count(X)

This function returns
the number of
occurrences of the field
X. To indicate a
specific field value to
match, format X as
eval(field="value").

chart, stats,
timechart,
sparkline()

This example returns the count of
events where status has the
value "404":

count(eval(status="404"))

These generate sparklines
for the counts of events.
The first looks at the _raw
field. The second counts
events with a user field:

sparkline(count)

sparkline(count(user))

dc(X) |
distinct_count(X)

This function returns
the count of distinct
values of the field X.

chart, stats,
timechart,
sparkline()

This example generates
sparklines for the distinct count of
devices and renames the field,
"numdevices":

sparkline(dc(device)) AS
numdevices

This example counts the
distinct sources for each
sourcetype, and buckets the
count for each five minute
spans:

sparkline(dc(source,5m))
by sourcetype

earliest(X)

This function returns
the chronologically
earliest seen
occurrence of a value
of a field X.

chart, stats,
timechart

estdc(X)

This function returns
the estimated count of
the distinct values of
the field X.

chart, stats,
timechart

estdc_error(X) This function returns
the theoretical error of
the estimated count of
the distinct values of

chart, stats,
timechart

38

the field X. The error
represents a ratio of
abs(estimate_value -
real_value)/real_value.

first(X)

This function returns
the first seen value of
the field X. In general,
the first seen value of
the field the most
recent instance of this
field, relative to the
input order of events
into the stats
command.

chart, stats,
timechart

last(X)

This function returns
the last seen value of
the field X. In general,
the last seen value of
the field relative to the
input order of events
into the stats
command.

chart, stats,
timechart

latest(X)

This function returns
the chronologically
latest seen occurrence
of a value of a field X.

chart, stats,
timechart

list(X)

This function returns
the list of all values of
the field X as a
multi-value entry. The
order of the values
reflects the order of
input events.

chart, stats,
timechart

max(X)

This function returns
the maximum value of
the field X. If the values
of X are non-numeric,
the max is found from
lexicographic ordering.

chart, stats,
timechart,
sparkline()

This example returns the
maximum value of "size":

max(size)

mean(X)

This function returns
the arithmetic mean of
the field X. See also,
avg(X).

chart, stats,
timechart,
sparkline()

This example returns the mean of
"kbps" values:

mean(kbps)

median(X)
This function returns
the middle-most value
of the field X.

chart, stats,
timechart

min(X)

39

This function returns
the minimum value of
the field X. If the values
of X are non-numeric,
the min is found from
lexicographic ordering.

chart, stats,
timechart

mode(X)
This function returns
the most frequent value
of the field X.

chart, stats,
timechart

p<X>(Y) |
perc<X>(Y) |
exactperc<X>(Y) |
upperperc<X>(Y)

This function returns
the X-th percentile
value of the field Y.
The functions perc, p,
and upperperc give
approximate values for
the integer percentile
requested. The
approximation
algorithm we use
provides a strict bound
of the actual value at
for any percentile. The
functions perc and p
return a single number
that represents the
lower end of that range
while upperperc gives
the approximate upper
bound. exactperc
provides the exact
value, but will be very
expensive for high
cardinality fields.

chart, stats,
timechart

This example returns the 5th
percentile value of a field "total":

perc5(total)

per_day(X)
This function returns
the values of field X per
day.

timechart

This example returns the values
of "total" per day.

per_day(total)

per_hour(X)
This function returns
the values of field X per
hour.

timechart

This example returns the values
of "total" per hour.

per_hour(total)

per_minute(X)
This function returns
the values of field X per
minute.

timechart

This example returns the values
of "total" per minute.

per_minute(total)

per_second(X) This function returns
the values of field X per
second.

timechart This example returns values of
"kb" per second:

40

per_second(kb)

range(X)

This function returns
the difference between
the max and min
values of the field X
ONLY IF the value of X
are numeric.

chart, stats,
timechart,
sparkline()

stdev(X)
This function returns
the sample standard
deviation of the field X.

chart, stats,
timechart,
sparkline()

This example returns the
standard deviation of wildcarded
fields "*delay" which can apply to
both, "delay" and "xdelay".

stdev(*delay)

stdevp(X)
This function returns
the population standard
deviation of the field X.

chart, stats,
timechart,
sparkline()

sum(X)
This function returns
the sum of the values
of the field X.

chart, stats,
timechart,
sparkline()

sum(eval(date_hour *
date_minute))

sumsq(X)

This function returns
the sum of the squares
of the values of the
field X.

chart, stats,
timechart,
sparkline()

values(X)

This function returns
the list of all distinct
values of the field X as
a multi-value entry. The
order of the values is
lexicographical.

chart, stats,
timechart

var(X)
This function returns
the sample variance of
the field X.

chart, stats,
timechart,
sparkline()

varp(X)
This function returns
the population variance
of the field X.

chart, stats,
timechart,
sparkline().

 Common date and time format variables

This topic lists the variables that are used to define time formats in the eval
functions strftime() and strptime() and for describing timestamps in event data.

41

 Time variables

Variable Description
 %Ez Splunk specific, timezone in minutes.

 %H Hour (24-hour clock) as a decimal number, includes leading zeros. (00 to 23)

 %I Hour (12-hour clock), includes leading zeros. (01-12)

 %k Like %H, the hour (24-hour clock) as a decimal number; but a leading zero is
replaced by a space. (0 to 23)

 %M Minute as a decimal number. (00 to 59)

 %N Subseconds with width. (%3N = milliseconds, %6N = microseconds, %9N =
nanoseconds)

 %p AM or PM.

 %Q
The subsecond component of 1970-01-01 00:00:00 UTC. (%3Q =
milliseconds, %6Q = microseconds, %9Q = nanoseconds with values of
000-999)

 %S Second as a decimal number. (00 to 61)

 %s
The Unix Epoch Time timestamp, or the number of seconds since the
Epoch: 1970-01-01 00:00:00 +0000 (UTC). (1352395800 is Thu Nov 8
09:30:00 2012)

 %T The time in 24-hour notation (%H:%M:%S).

 %Z The timezone abbreviation. (EST for Eastern Time)

 %:z The timezone offset from UTC, in hour and minute: +hhmm or -hhmm.
(-0500 for Eastern Time)

 %% A literal "%" character.

 Date variables

Variable Description
 %F Equivalent to %Y-%m-%d (the ISO 8601 date format).

 Specifying days

Variable Description
 %A Full weekday name. (Sunday, ..., Saturday)

 %a Abbreviated weekday name. (Sun, ... ,Sat)

 %d Day of the month as a decimal number, includes a leading zero. (01 to 31)

 %e Like %d, the day of the month as a decimal number, but a leading zero is
replaced by a space. (1 to 31)

 %j Day of year as a decimal number, includes a leading zero. (001 to 366)

42

 %w Weekday as a decimal number. (0 = Sunday, ..., 6 = Saturday)

 Specifying months

Variable Description
 %b Abbreviated month name. (Jan, Feb, etc.)

 %B Full month name. (January, February, etc.)

 %m Month as a decimal number. (01 to 12)

 Specifying year

Variable Description
 %y Year as a decimal number, without the century. (00 to 99)

 %Y Year as a decimal number with century. (2012)

 Examples

Time format string Result
 %Y-%m-%d 2012-12-31

 %y-%m-%d 12-12-31

 %b %d, %Y Feb 11, 2008

q|%d%b '%y = %Y-%m-%d| q|23 Apr '12 = 2012-04-23|

 Time modifiers for search

You can use time modifiers to customize the time range of a search by specifying
a time to start or stop, or change the format of the timestamps in the search
results.

 List of time modifiers

We recommend using the earliest and/or latest modifiers to specify custom
and relative time ranges. Also, when specifying relative time, you can use now to
refer to the current time.

Modifier Syntax Description

earliest earliest=[+|-]<time_integer><time_unit>@<time_unit>

Specify the
earliest time for
the time range
of your search.

latest latest=[+|-]<time_integer><time_unit>@<time_unit>

43

Specify the
latest time for
the time range
of your search.

now now()

Refers to the
current time. If
set to earliest,
now() is the
start of the
search.

time time()

In real-time
searches,
time() is the
current
machine time.

For more information about customizing your search window, see "Specify
real-time time range windows in your search" in the Search manual.

 How to specify relative time modifiers

You can define the relative time in your search with a string of characters that
indicate time amount (integer and unit) and, optionally, a "snap to" time unit:
[+|-]<time_integer><time_unit>@<time_unit>.

1. Begin your string with a plus (+) or minus (-) to indicate the offset from the
current time.

2. Define your time amount with a number and a unit; the supported time units
are:

second: s, sec, secs, second, seconds•
minute: m, min, minute, minutes•
hour: h, hr, hrs, hour, hours•
day: d, day, days•
week: w, week, weeks•
days of the week: w0 (Sunday), w1, w2, w3, w4, w5 and w6 (Saturday)•
month: mon, month, months•
quarter: q, qtr, qtrs, quarter, quarters•
year: y, yr, yrs, year, years•

Note: For Sunday, you can specify w0 and w7.

For example, to start your search an hour ago, use either

44

earliest=-h

or,

earliest=-60m

When specifying single time amounts, the number one is implied; 's' is the same
as '1s', 'm' is the same as '1m', 'h' is the same as '1h', etc.

3. If you want, specify a "snap to" time unit; this indicates the nearest or latest
time to which your time amount rounds down. Separate the time amount from the
"snap to" time unit with an "@" character.

You can use any of time units listed in Step 2. For example, @w, @week,
and @w0 for Sunday; @month for the beginning of the month; and @q,
@qtr, or @quarter for the beginning of the most recent quarter (Jan 1, Apr
1, Jul 1, or Oct 1).

•

You can also specify offsets from the snap-to-time or "chain" together
the time modifiers for more specific relative time definitions. For example,
@d-2h snaps to the beginning of today (12AM) and subtract 2 hours from
that time.

•

When snapping to the nearest or latest time, Splunk always snaps
backwards or rounds down to the latest time not after the specified time.
For example, if it is 11:59:00 and you "snap to" hours, you will snap to
11:00 not 12:00.

•

If you don't specify a time offset before the "snap to" amount, Splunk
interprets the time as "current time snapped to" the specified amount. For
example, if it is currently 11:59 PM on Friday and you use @w6 to "snap to
Saturday", the resulting time is the previous Saturday at 12:01 AM.

•

Example 1: To search events from the beginning of the current week:

earliest=@w0

Example 2: To search events from the last full business week:

earliest=-7d@w1 latest=@w6

Example 3: To search with an exact date as boundary, such as from November
5th at 8PM to Novermber 12 at 8PM, use the timeformat: %m/%d/%Y:%H:%M:%S

earliest="5/11/2012:20:00:00" latest="12/11/2012:20:00:00"

45

 More time modifiers

These search time modifiers are still valid, BUT may be removed and their
function no longer supported in a future release.

Modifier Syntax Description

daysago daysago=<int>
Search events within the last integer
number of days.

enddaysago enddaysago=<int>
Set an end time for an integer number
of days before now.

endhoursago endhoursago=<int>
Set an end time for an integer number
of hours before now.

endminutesago endminutesago=<int>
Set an end time for an integer number
of minutes before now.

endmonthsago endmonthsago=<int
Set an end time for an integer number
of months before now.

endtime endtime=<string>

Search for events before the specified
time (exclusive of the specified time).
Use timeformat to specify how
the timestamp is formatted.

endtimeu endtimeu=<int>
Search for events before the specific
epoch time (Unix time). .

hoursago hoursago=<int>
Search events within the last integer
number of hours.

minutesago minutesago=<int>
Search events within the last integer
number of minutes.

monthsago monthsago=<int>
Search events within the last integer
number of months.

<searchtimespandays searchtimespandays=<int>
Search within a specified range of
days (expressed as an integer).

searchtimespanhours searchtimespanhours=<int>
Search within a specified range of
hours (expressed as an integer).

searchtimespanminutes searchtimespanminutes=<int>
Search within a specified range of
minutes (expressed as an integer).

searchtimespanmonths searchtimespanmonths=<int>
Search within a specified range of
months (expressed as an integer).

startdaysago startdaysago=<int>
Search the specified number of days
before the present time.

starthoursago starthoursago=<int>
Search the specified number of hours
before the present time.

46

startminutesago startminutesago=<int>
Search the specified number of
minutes before the present time.

startmonthsago startmonthsago=<int>
Search the specified number of
months before the present time.

starttime starttime=<timestamp>
Search from the specified date and
time to the present (inclusive of the
specified time).

starttimeu starttimeu=<int>
Search from the specific epoch (Unix
time).

timeformat timeformat=<string>

Set the timeformat for the starttime
and endtime modifiers. By
default:
timeformat=%m/%d/%Y:%H:%M:%S

 List of data types

This topic is out of date.

This page lists the data types used to define the syntax of the search language.
Learn more about the commands used in these examples by referring to the
search command reference.

 after-opt

Syntax: timeafter=<int>(s|m|h|d)?
Description: the amount of time to add to endtime (ie expand the time
region forward in time)

 anovalue-action-option

Syntax: action=(annotate|filter|summary)
Description: If action is ANNOTATE, a new field is added to the event
containing the anomalous value that indicates the anomaly score of the
value If action is FILTER, events with anomalous value(s) are isolated. If
action is SUMMARY, a table summarizing the anomaly statistics for each
field is generated.

47

 anovalue-pthresh-option

Syntax: pthresh=<num>
Description: Probability threshold (as a decimal) that has to be met for a
value to be deemed anomalous

 associate-improv-option

Syntax: improv=<num>
Description: Minimum entropy improvement for target key. That is,
entropy(target key) - entropy(target key given reference key/value) must
be greater than or equal to this.

 associate-option

Syntax:
<associate-supcnt-option>|<associate-supfreq-option>|<associate-improv-option>
Description: Associate command options

 associate-supcnt-option

Syntax: supcnt=<int>
Description: Minimum number of times the reference key=reference
value combination must be appear. Must be a non-negative integer.

 associate-supfreq-option

Syntax: supfreq=<num>
Description: Minimum frequency of reference key=reference value
combination, as a fraction of the number of total events.

 before-opt

Syntax: timebefore=<int>(s|m|h|d)?
Description: the amount of time to subtract from starttime (ie expand the
time region backwards in time)

 bucket-bins

Syntax: bins=<int>
Description: Sets the maximum number of bins to discretize into. Given
this upper-bound guidance, the bins will snap to human sensible bounds.
Example: bins=10

48

 bucket-span

Syntax: span=(<span-length>|<log-span>)
Description: Sets the size of each bucket.
Example: span=2d
Example: span=5m
Example: span=10

 bucket-start-end

Syntax: (start=|end=)<num>
Description: Sets the minimum and maximum extents for numerical
buckets.

 bucketing-option

Syntax: <bucket-bins>|<bucket-span>|<bucket-start-end>
Description: Discretization option.

 by-clause

Syntax: by <field-list>
Description: Fields to group by.
Example: BY addr, port
Example: BY host

 cmp

Syntax: =|!=|<|<=|>|>=
Description: None

 collapse-opt

Syntax: collapse=<bool>
Description: whether to collapse terms that are a prefix of another term
and the event count is the same
Example: collapse=f

 collect-addinfo

Syntax: No syntax
Description: None

49

 collect-addtime

Syntax: addtime=<bool>
Description: whether to prefix a time into each event if the event does not
contain a _raw field. The first found field of the following times is used:
info_min_time, _time, now() defaults to true

 collect-arg

Syntax: <collect-addtime> | <collect-index> | <collect-file> |
<collect-spool> | <collect-marker> | <collect-testmode>
Description: None

 collect-file

Syntax: file=<string>
Description: name of the file where to write the events to. Optional,
default "<random-num>_events.stash" The following placeholders can be
used in the file name $timestamp$, $random$ and will be replaced with a
timestamp, a random number respectively

 collect-index

Syntax: index=<string>
Description: name of the index where splunk should add the events to.
Note: the index must exist for events to be added to it, the index is NOT
created automatically.

 collect-marker

Syntax: marker=<string>
Description: a string, usually of key-value pairs, to append to each event
written out. Optional, default ""

 collect-spool

Syntax: spool=<bool>
Description: If set to true (default is true), the summary indexing file will
be written to Splunk's spool directory, where it will be indexed
automatically. If set to false, file will be written to
$SPLUNK_HOME/var/run/splunk.

50

 collect-testmode

Syntax: testmode=<bool>
Description: toggle between testing and real mode. In testing mode the
results are not written into the new index but the search results are
modified to appear as they would if sent to the index. (defaults to false)

 comparison-expression

Syntax: <field><cmp><value>
Description: None

 connected-opt

Syntax: connected=<bool>
Description: Relevant iff fields is not empty. Controls whether an event
that is not inconsistent and not consistent with the fields of a transaction,
opens a new transaction (connected=t) or is added to the transaction. An
event can be not inconsistent and not consistent if it contains fields
required by the transaction but none of these fields has been instantiated
in the transaction (by a previous event addition).

 contingency-maxopts

Syntax: (maxrows|maxcols)=<int>
Description: Maximum number of rows or columns. If the number of
distinct values of the field exceeds this maximum, the least common
values will be ignored. A value of 0 means unlimited rows or columns.

 contingency-mincover

Syntax: (mincolcover|minrowcover)=<num>
Description: Cover only this percentage of values for the row or column
field. If the number of entries needed to cover the required percentage of
values exceeds maxrows or maxcols, maxrows or maxcols takes
precedence.

 contingency-option

Syntax:
<contingency-maxopts>|<contingency-mincover>|<contingency-usetotal>|<contingency-totalstr>
Description: Options for the contingency table

51

 contingency-totalstr

Syntax: totalstr=<field>
Description: Field name for the totals row/column

 contingency-usetotal

Syntax: usetotal=<bool>
Description: Add row and column totals

 convert-auto

Syntax: auto("(" (<wc-field>)? ")")?
Description: Automatically convert the field(s) to a number using the best
conversion. Note that if not all values of a particular field can be converted
using a known conversion type, the field is left untouched and no
conversion at all in done for that field.
Example: ... | convert auto(*delay) as *delay_secs
Example: ... | convert auto(*) as *_num
Example: ... | convert auto(delay) auto(xdelay)
Example: ... | convert auto(delay) as delay_secs
Example: ... | convert auto
Example: ... | convert auto()
Example: ... | convert auto(*)

 convert-ctime

Syntax: ctime"("<wc-field>?")"
Description: Convert an epoch time to an ascii human readable time. Use
timeformat option to specify exact format to convert to.
Example: ... | convert timeformat="%H:%M:%S" ctime(_time) as timestr

 convert-dur2sec

Syntax: dur2sec"("<wc-field>?")"
Description: Convert a duration format "D+HH:MM:SS" to seconds.
Example: ... | convert dur2sec(*delay)
Example: ... | convert dur2sec(xdelay)

 convert-function

Syntax:
<convert-auto>|<convert-dur2sec>|<convert-mstime>|<convert-memk>|<convert-none>|<convert-num>|<convert-rmunit>|<convert-rmcomma>|<convert-ctime>|<convert-mktime>

52

Description: None

 convert-memk

Syntax: memk"(" <wc-field>? ")"
Description: Convert a {KB, MB, GB} denominated size quantity into a
KB
Example: ... | convert memk(VIRT)

 convert-mktime

Syntax: mktime"("<wc-field>?")"
Description: Convert an human readable time string to an epoch time.
Use timeformat option to specify exact format to convert from.
Example: ... | convert mktime(timestr)

 convert-mstime

Syntax: mstime"(" <wc-field>? ")"
Description: Convert a MM:SS.SSS format to seconds.

 convert-none

Syntax: none"(" <wc-field>? ")"
Description: In the presence of other wildcards, indicates that the
matching fields should not be converted.
Example: ... | convert auto(*) none(foo)

 convert-num

Syntax: num"("<wc-field>? ")"
Description: Like auto(), except non-convertible values are removed.

 convert-rmcomma

Syntax: rmcomma"("<wc-field>? ")"
Description: Removes all commas from value, e.g. '1,000,000.00' ->
'1000000.00'

 convert-rmunit

Syntax: rmunit"(" <wc-field>? ")"

53

Description: Looks for numbers at the beginning of the value and
removes trailing text.
Example: ... | convert rmunit(duration)

 copyresults-dest-option

Syntax: dest=<string>
Description: The destination file where to copy the results to. The string
is interpreted as path relative to SPLUNK_HOME and (1) should point to a
.csv file and (2) the file should be located either in etc/system/lookups/ or
etc/apps/<app-name>/lookups/

 copyresults-sid-option

Syntax: sid=<string>
Description: The search id of the job whose results are to be copied.
Note, the user who is running this command should have permission to
the job pointed by this id.

 correlate-type

Syntax: type=cocur
Description: Type of correlation to calculate. Only available option
currently is the co-occurrence matrix, which contains the percentage of
times that two fields exist in the same events.

 count-opt

Syntax: count=<int>
Description: The maximum number of results to return
Example: count=10

 crawl-option

Syntax: <string>=<string>
Description: Override settings from crawl.conf.
Example: root=/home/bob

 daysago

Syntax: daysago=<int>
Description: Search the last N days. (equivalent to startdaysago)

54

 debug-method

Syntax: optimize|roll|logchange|validate|delete|sync|sleep|rescan
Description: The available commands for debug command

 dedup-consecutive

Syntax: consecutive=<bool>
Description: Only eliminate events that are consecutive

 dedup-keepempty

Syntax: keepempty=<bool>
Description: If an event contains a null value for one or more of the
specified fields, the event is either retained (if keepempty=true) or
discarded

 dedup-keepevents

Syntax: keepevents=<bool>
Description: Keep all events, remove specific values instead

 default

Syntax: No syntax
Description: None

 delim-opt

Syntax: delim=<string>
Description: A string used to delimit the original event values in the
transaction event fields.

 email_address

Syntax: <string>
Description: None
Example: bob@smith.com

 email_list

Syntax: <email_address> (, <email_address>)*
Description: None

55

Example: "bob@smith.com, elvis@presley.com"

 end-opt

Syntax: endswith=<transam-filter-string>
Description: A search or eval filtering expression which if satisfied by an
event marks the end of a transaction
Example: endswith=eval(speed_field > max_speed_field/12)
Example: endswith=(username=foobar)
Example: endswith=eval(speed_field > max_speed_field)
Example: endswith="logout"

 enddaysago

Syntax: enddaysago=<int>
Description: A short cut to set the end time. endtime = now - (N days)

 endhoursago

Syntax: endhoursago=<int>
Description: A short cut to set the end time. endtime = now - (N hours)

 endminutesago

Syntax: endminutesago=<int>
Description: A short cut to set the end time. endtime = now - (N minutes)

 endmonthsago

Syntax: endmonthsago=<int>
Description: A short cut to set the start time. starttime = now - (N months)

 endtime

Syntax: endtime=<string>
Description: All events must be earlier or equal to this time.

 endtimeu

Syntax: endtime=<int>
Description: Set the end time to N seconds since the epoch. (unix time)

56

 erex-examples

Syntax: ""<string>(, <string>)*""
Description: None
Example: "foo, bar"

 eval-bool-exp

Syntax: (NOT|!)? (<eval-compare-exp>|<eval-function-call>)
((AND|OR|XOR) <eval-expression>)*
Description: None

 eval-compare-exp

Syntax: (<field>|<string>|<num>) (<|>|<=|>=|!=|=|==|LIKE)
<eval-expression>
Description: None

 eval-concat-exp

Syntax: ((<field>|<string>|<num>) (.
<eval-expression>)*)|((<field>|<string>) (+ <eval-expression>)*)
Description: concatenate fields and strings
Example: first_name." ".last_nameSearch

 eval-expression

Syntax: <eval-math-exp> | <eval-concat-exp> | <eval-compare-exp> |
<eval-bool-exp> | <eval-function-call>
Description: A combination of literals, fields, operators, and functions that
represent the value of your destination field. The following are the basic
operations you can perform with eval. For these evaluations to work, your
values need to be valid for the type of operation. For example, with the
exception of addition, arithmetic operations may not produce valid results
if the values are not numerical. For addition, Splunk can concatenate the
two operands if they are both strings. When concatenating values with '.',
Splunk treats both values as strings regardless of their actual type.

 eval-field

Syntax: <field>
Description: A field name for your evaluated value.
Example: velocity

57

 eval-function

Syntax:
abs|case|cidrmatch|coalesce|exact|exp|floor|if|ifnull|isbool|isint|isnotnull|isnull|isnum|isstr|len|like|ln|log|lower|match|max|md5|min|mvcount|mvindex|mvfilter|now|null|nullif|pi|pow|random|replace|round|searchmatch|sqrt|substr|tostring|trim|ltrim|rtrim|typeof|upper|urldecode|validate
Description: Function used by eval.
Example: md5(field)
Example: typeof(12) + typeof("string") + typeof(1==2) + typeof(badfield)
Example: searchmatch("foo AND bar")
Example: sqrt(9)
Example: round(3.5)
Example: replace(date, "^(\d{1,2})/(\d{1,2})/", "\2/\1/")
Example: pi()
Example: nullif(fielda, fieldb)
Example: random()
Example: pow(x, y)
Example: mvfilter(match(email, "\.net$") OR match(email, "\.org$"))
Example: mvindex(multifield, 2)
Example: null()
Example: now()
Example: isbool(field)
Example: exp(3)
Example: floor(1.9)
Example: coalesce(null(), "Returned value", null())
Example: exact(3.14 * num)
Example: case(error == 404, "Not found", error == 500, "Internal Server
Error", error == 200, "OK")
Example: cidrmatch("123.132.32.0/25", ip)
Example: abs(number)
Example: isnotnull(field)
Example: substr("string", 1, 3) + substr("string", -3)
Example: if(error == 200, "OK", "Error")
Example: len(field)
Example: log(number, 2)
Example: lower(username)
Example: match(field, "^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$")
Example: max(1, 3, 6, 7, "f"^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$")oo", field)
Example: like(field, "foo%")
Example: ln(bytes)
Example: mvcount(multifield)
Example:
urldecode("http%3A%2F%2Fwww.splunk.com%2Fdownload%3Fr%3Dheader")
Example: validate(isint(port), "ERROR: Port is not an integer", port >= 1
AND port <= 65535, "ERROR: Port is out of range")

58

Example: tostring(1==1) + " " + tostring(15, "hex") + " " +
tostring(12345.6789, "commas")
Example: trim(" ZZZZabcZZ ", " Z")

 eval-function-call

Syntax: <eval-function> "(" <eval-expression> ("," <eval-expression>)* ")"
Description: None

 eval-math-exp

Syntax: (<field>|<num>) ((+|-|*|/|%) <eval-expression>)*
Description: None
Example: pi() * pow(radius_a, 2) + pi() * pow(radius_b, 2)

 evaled-field

Syntax: "eval("<eval-expression>")"
Description: A dynamically evaled field

 event-id

Syntax: <int>:<int>
Description: a splunk internal event id

 eventtype-specifier

Syntax: eventtype=<string>
Description: Search for events that match the specified eventtype

 eventtypetag-specifier

Syntax: eventtypetag=<string>
Description: Search for events that would match all eventtypes tagged by
the string

 extract-opt

Syntax:
(segment=<bool>)|(auto=<bool>)|(reload=<bool>)|(limit=<int>)|(maxchars=<int>)|(mv_add=<bool>)|(clean_keys=<bool>)
Description: Extraction options. "segment" specifies whether to note the
locations of key/value pairs with the results (internal, false). "auto"
specifies whether to perform automatic '=' based extraction (true). "reload"

59

specifies whether to force reloading of props.conf and transforms.conf
(false). "limit" specifies how many automatic key/value pairs to extract
(50). "kvdelim" string specifying a list of character delimiters that separate
the key from the value "pairdelim" string specifying a list of character
delimiters that separate the key-value pairs from each other "maxchars"
specifies how many characters to look into the event (10240). "mv_add"
whether to create multivalued fields. Overrides MV_ADD from
transforms.conf "clean_keys" whether to clean keys. Overrides
CLEAN_KEYS from transforms.conf
Example: reload=true
Example: auto=false

 extractor-name

Syntax: <string>
Description: A stanza that can be found in transforms.conf
Example: access-extractions

 fields-opt

Syntax: fields=<string>? (,<string>)*
Description: DEPRECATED: The preferred usage of transaction is for list
of fields to be specified directly as arguments. E.g. 'transaction foo bar'
rather than 'transaction fields="foo,bar"' The 'fields' constraint takes a list
of fields. For search results to be members of a transaction, for each field
specified, if they have a value, it must have the same value as other
members in that transaction. For example, a search result that has
host=mylaptop can never be in the same transaction as a search result
that has host=myserver, if host is one of the constraints. A search result
that does not have a host value, however, can be in a transaction with
another search result that has host=mylaptop, because they are not
inconsistent.
Example: fields=host,cookie

 grouping-field

Syntax: <field>
Description: By default, the typelearner initially groups events by the
value of the grouping-field, and then further unifies and merges those
groups, based on the keywords they contain. The default grouping field is
"punct" (the punctuation seen in _raw).
Example: host

60

 grouping-maxlen

Syntax: maxlen=<int>
Description: determines how many characters in the grouping-field value
to look at. If set to negative, the entire value of the grouping-field value is
used to initially group events
Example: maxlen=30

 host-specifier

Syntax: host=<string>
Description: Search for events from the specified host

 hosttag-specifier

Syntax: hosttag=<string>
Description: Search for events that have hosts that are tagged by the
string

 hoursago

Syntax: hoursago=<int>
Description: Search the last N hours. (equivalent to starthoursago)

 increment

Syntax: <int:increment>(s|m|h|d)?
Description: None
Example: 1h

 index-expression

Syntax: \"<string>\"|<term>|<search-modifier>
Description: None

 index-specifier

Syntax: index=<string>
Description: Search the specified index instead of the default index

61

 input-option

Syntax: <string>=<string>
Description: Override settings from inputs.conf.
Example: root=/home/bob

 join-options

Syntax: usetime=<bool> | earlier=<bool> | overwrite=<bool> | max=<int>
Description: Options to the join command. usetime indicates whether to
limit matches to sub results that are earlier or later (depending on the
'earlier' option which is only valid when usetime=true) than the main result
to join with, default = false. 'overwrite' indicates if fields from the sub
results should overwrite those from the main result if they have the same
field name (default = true). max indicates the maximum number of sub
results each main result can join with. (default = 1, 0 means no limit).
Example: max=3
Example: usetime=t earlier=f
Example: overwrite=f
Example: usetime=t

 keepevicted-opt

Syntax: keepevicted=<bool>
Description: Whether to output evicted transactions. Evicted transactions
can be distinguished from non-evicted transactions by checking the value
of the 'evicted' field, which is set to '1' for evicted transactions

 key-list

Syntax: (<string>)*
Description: a list of keys that are ANDed to provide a filter for
surrounding command

 kmeans-cnumfield

Syntax: cfield=<field>
Description: Controls the field name for the cluster number for each
event

62

 kmeans-distype

Syntax: dt=(l1norm|l2norm|cityblock|sqeuclidean|cosine)
Description: Distance metric to use (L1/L1NORM equivalent to
CITYBLOCK). L2NORM equivalent to SQEUCLIDEAN

 kmeans-iters

Syntax: maxiters=<int>
Description: Maximum number of iterations allowed before failing to
converge

 kmeans-k

Syntax: k=<int>(-<int>)?
Description: Number of initial clusters to use. Can be a range, in which
case each value in the range will be used once and summary data given.

 kmeans-options

Syntax:
<kmeans-reps>|<kmeans-iters>|<kmeans-tol>|<kmeans-k>|<kmeans-cnumfield>|<kmeans-distype>|<kmeans-showlabel>
Description: Options for kmeans command

 kmeans-reps

Syntax: reps=<int>
Description: Number of times to repeat kmeans using random starting
clusters

 kmeans-showlabel

Syntax: showlabel=<bool>
Description: Controls whether or not the cluster number is added to the
data.

 kmeans-tol

Syntax: tol=<num>
Description: Algorithm convergence tolerance

63

 lit-value

Syntax: <string>|<num>
Description: None

 lmaxpause-opt

Syntax: maxpause=<int>(s|m|h|d)?
Description: the maximum (inclusive) time between two consecutive
events in a contiguous time region

 log-span

Syntax: (<num>)?log(<num>)?
Description: Sets to log based span, first number if coefficient, second
number is base coefficient, if supplied, must be real number >= 1.0 and <
base base, if supplied, must be real number > 1.0 (strictly greater than 1)
Example: 2log5
Example: log

 logical-expression

Syntax: (NOT)?
<logical-expression>)|<comparison-expression>|(<logical-expression>
OR? <logical-expression>)
Description: None

 max-time-opt

Syntax: max_time=<int>
Description: None
Example: max_time=3

 maxevents-opt

Syntax: maxevents=<int>
Description: The maximum number of events in a transaction. If the value
is negative this constraint is disabled.

 maxinputs-opt

Syntax: maxinputs=<int>

64

Description: Determines how many of the top results are passed to the
script.
Example: maxinputs=1000

 maxopenevents-opt

Syntax: maxopenevents=<int>
Description: Specifies the maximum number of events (which are) part of
open transactions before transaction eviction starts happening, using LRU
policy.

 maxopentxn-opt

Syntax: maxopentxn=<int>
Description: Specifies the maximum number of not yet closed
transactions to keep in the open pool before starting to evict transactions,
using LRU policy.

 maxpause-opt

Syntax: maxpause=<int>(s|m|h|d)?
Description: The maxpause constraint requires there be no pause
between a transaction's events of greater than maxpause. If value is
negative, disable the maxpause constraint.

 maxsearchesoption

Syntax: maxsearches=<int>
Description: The maximum number of searches to run. Will generate
warning if there are more search results.
Example: maxsearches=42

 maxspan-opt

Syntax: maxspan=<int>(s|m|h|d)?
Description: The maxspan constraint requires the transaction's events to
span less than maxspan. If value is negative, disable the maxspan
constraint.

 memcontrol-opt

Syntax: <maxopentxn-opt> | <maxopenevents-opt> | <keepevicted-opt>
Description: None

65

 metadata-delete-restrict

Syntax: (host::|source::|sourcetype::)<string>
Description: restrict the deletion to the specified host, source or
sourcetype.

 metadata-type

Syntax: hosts|sources|sourcetypes
Description: controls which metadata type that will be returned

 minutesago

Syntax: minutesago=<int>
Description: Search the last N minutes. (equivalent to startminutesago)

 monthsago

Syntax: monthsago=<int>
Description: Search the last N months. (equivalent to startmonthsago)

 multikv-copyattrs

Syntax: copyattrs=<bool>
Description: Controls the copying of non-metadata attributes from the
original event to extract events (default = true)

 multikv-fields

Syntax: fields <field-list>
Description: Filters out from the extracted events fields that are not in the
given field list

 multikv-filter

Syntax: filter <field-list>
Description: If specified, a table row must contain one of the terms in the
list before it is extracted into an event

 multikv-forceheader

Syntax: forceheader=<int>

66

Description: Forces the use of the given line number (1 based) as the
table's header. By default a header line is searched for.

 multikv-multitable

Syntax: multitable=<bool>
Description: Controls whether or not there can be multiple tables in a
single _raw in the original events? (default = true)

 multikv-noheader

Syntax: noheader=<bool>
Description: Allow tables with no header? If no header fields would be
named column1, column2, ... (default = false)

 multikv-option

Syntax:
<multikv-copyattrs>|<multikv-fields>|<multikv-filter>|<multikv-forceheader>|<multikv-multitable>|<multikv-noheader>|<multikv-rmorig>
Description: Multikv available options

 multikv-rmorig

Syntax: rmorig=<bool>
Description: Controls the removal of original events from the result set
(default=true)

 mvlist-opt

Syntax: mvlist=<bool>|<field-list>
Description: Flag controlling whether the multivalued fields of the
transaction are (1) a list of the original events ordered in arrival order or
(2) a set of unique field values ordered lexigraphically. If a comma/space
delimited list of fields is provided only those fields are rendered as lists

 outlier-action-opt

Syntax: action=(remove|transform)
Description: What to do with outliers. RM | REMOVE removes the event
containing the outlying numerical value. TF | TRANSFORM truncates the
outlying value to the threshold for outliers and prefixes the value with
"000"

67

 outlier-option

Syntax:
<outlier-type-opt>|<outlier-action-opt>|<outlier-param-opt>|<outlier-uselower-opt>
Description: Outlier options

 outlier-param-opt

Syntax: param=<num>
Description: Parameter controlling the threshold of outlier detection. For
type=IQR, an outlier is defined as a numerical value that is outside of
param multiplied the inter-quartile range.

 outlier-type-opt

Syntax: type=iqr
Description: Type of outlier detection. Only current option is IQR
(inter-quartile range)

 outlier-uselower-opt

Syntax: uselower=<bool>
Description: Controls whether to look for outliers for values below the
median

 prefix-opt

Syntax: prefix=<string>
Description: The prefix to do typeahead on
Example: prefix=source

 quoted-str

Syntax: "" <string> ""
Description: None

 readlevel-int

Syntax: 0|1|2|3
Description: How deep to read the events, 0 : just
source/host/sourcetype, 1 : 0 with _raw, 2 : 1 with kv, 3 2 with types (
deprecated in 3.2)

68

 regex-expression

Syntax: (\")?<string>(\")?
Description: A Perl Compatible Regular Expression supported by the
pcre library.
Example: ... | regex _raw="(?<!\d)10.\d{1,3}\.\d{1,3}\.\d{1,3}(?!\d)"

 rendering-opt

Syntax: <delim-opt> | <mvlist-opt>
Description: None

 result-event-opt

Syntax: events=<bool>
Description: Option controlling whether to load the events or results of a
job. (default: false)
Example: events=t

 savedsearch-identifier

Syntax:
savedsearch="<user-string>:<application-string>:<search-name-string>"
Description: The unique identifier of a savedsearch whose artifacts need
to be loaded. A savedsearch is uniquely identified by the triplet {user,
application, savedsearch name}.
Example: savedsearch="admin:search:my saved search"

 savedsearch-macro-opt

Syntax: nosubstitution=<bool>
Description: If true, no macro replacements are made.

 savedsearch-opt

Syntax: <savedsearch-macro-opt>|<savedsearch-replacement-opt>
Description: None

 savedsearch-replacement-opt

Syntax: <string>=<string>
Description: A key value pair to be used in macro replacement.

69

 savedsplunk-specifier

Syntax: (savedsearch|savedsplunk)=<string>
Description: Search for events that would be found by specified
search/splunk

 savedsplunkoption

Syntax: <string>
Description: Name of saved search
Example: mysavedsearch

 script-arg

Syntax: <string>
Description: An argument passed to the script.
Example: to=bob@mycompany.com

 script-name-arg

Syntax: <string>
Description: The name of the script to execute, minus the path and file
extension.
Example: sendemail

 search-modifier

Syntax:
<sourcetype-specifier>|<host-specifier>|<source-specifier>|<savedsplunk-specifier>|<eventtype-specifier>|<eventtypetag-specifier>|<hosttag-specifier>|<tag-specifier>
Description: None

 searchoption

Syntax: search=\"<string>\"
Description: Search to run map on
Example: search="search starttimeu::$start$ endtimeu::end"

 searchtimespandays

Syntax: searchtimespandays=<int>
Description: None

70

 searchtimespanhours

Syntax: searchtimespanhours=<int>
Description: The time span operators are always applied from the last
time boundary set. Therefore, if an endtime operator is closest to the left
of a timespan operator, it will be applied to the starttime. If you had
'enddaysago::1 searchtimespanhours::5', it would be equivalent to
'starthoursago::29 enddaysago::1'.

 searchtimespanminutes

Syntax: searchtimespanminutes=<int>
Description: None

 searchtimespanmonths

Syntax: searchtimespanmonths=<int>
Description: None

 select-arg

Syntax: <string>
Description: Any value sql select arguments, per the syntax found at
http://www.sqlite.org/lang_select.html. If no "from results" is specified in
the select-arg it will be inserted it automatically. Runs a SQL Select query
against passed in search results. All fields referenced in the select
statement must be prefixed with an underscore. Therefore, "ip" should be
references as "_ip" and "_raw" should be referenced as "__raw". Before
the select command is executed, the previous search results are put into a
temporary database table called "results". If a row has no values, "select"
ignores it to prevent blank search results.

 selfjoin-options

Syntax: overwrite=<bool> | max=<int> | keepsingle=<int>
Description: The selfjoin joins each result with other results that have the
same value for the join fields. 'overwrite' controls if fields from these 'other'
results should overwrite fields of the result used as the basis for the join
(default=true). max indicates the maximum number of 'other' results each
main result can join with. (default = 1, 0 means no limit). 'keepsingle'
controls whether or not results with a unique value for the join fields (and
thus no other results to join with) should be retained. (default = false)
Example: max=3

71

Example: keepsingle=t
Example: overwrite=f

 server-list

Syntax: (<string>)*
Description: A list of possibly wildcarded servers changes in the context
of the differences. Try it see if it makes sense. * - header=[true | false] :
optionally you can show a header that tries to explain the diff output * -
attribute=[attribute name] : you can choose to diff just a single attribute of
the results.

 sid-opt

Syntax: <string>
Description: The search id of the job whose artifacts need to be loaded.
Example: 1233886270.2

 single-agg

Syntax: count|<stats-func>(<field>)
Description: A single aggregation applied to a single field (can be evaled
field). No wildcards are allowed. The field must be specified, except when
using the special 'count' aggregator that applies to events as a whole.
Example: avg(delay)
Example: sum({date_hour * date_minute})
Example: count

 slc-option

Syntax:
(t=<num>|(delims=<string>)|(showcount=<bool>)|(countfield=<field>)|(labelfield=<field>)|(field=<field>)|(labelonly=<bool>)|(match=(termlist|termset|ngramset)))
Description: Options for configuring the simple log clusters. "T=" sets the
threshold which must be > 0.0 and < 1.0. The closer the threshold is to 1,
the more similar events have to be in order to be considered in the same
cluster. Default is 0.8 "delims" configures the set of delimiters used to
tokenize the raw string. By default everything except 0-9, A-Z, a-z, and '_'
are delimiters. "showcount" if yes, this shows the size of each cluster
(default = true unless labelonly is set to true) "countfield" name of field to
write cluster size to, default = "cluster_count" "labelfield" name of field to
write cluster number to, default = "cluster_label" "field" name of field to

72

analyze, default = _raw "labelonly" if true, instead of reducing each cluster
to a single event, keeps all original events and merely labels with them
their cluster number "match" determines the similarity method used,
defaulting to termlist. termlist requires the exact same ordering of terms,
termset allows for an unordered set of terms, and ngramset compares
sets of trigram (3-character substrings). ngramset is significantly slower on
large field values and is most useful for short non-textual fields, like 'punct'
Example: t=0.9 delims=" ;:" showcount=true countfield="SLCCNT"
labelfield="LABEL" field=_raw labelonly=true

 sort-by-clause

Syntax: ("-"|"+")<sort-field> ","
Description: List of fields to sort by and their sort order (ascending or
descending)
Example: - time, host
Example: -size, +source
Example: _time, -host

 sort-field

Syntax: <field> | ((auto|str|ip|num) "(" <field> ")")
Description: a sort field may be a field or a sort-type and field. sort-type
can be "ip" to interpret the field's values as ip addresses. "num" to treat
them as numbers, "str" to order lexigraphically, and "auto" to make the
determination automatically. If no type is specified, it is assumed to be
"auto"
Example: host
Example: _time
Example: ip(source_addr)
Example: str(pid)
Example: auto(size)

 source-specifier

Syntax: source=<string>
Description: Search for events from the specified source

 sourcetype-specifier

Syntax: sourcetype=<string>
Description: Search for events from the specified sourcetype

73

 span-length

Syntax: <int:span>(<timescale>)?
Description: Span of each bin. If using a timescale, this is used as a time
range. If not, this is an absolute bucket "length."
Example: 2d
Example: 5m
Example: 10

 split-by-clause

Syntax: <field> (<tc-option>)* (<where-clause>)?
Description: Specifies a field to split by. If field is numerical, default
discretization is applied.

 srcfields

Syntax: (<field>|<quoted-str>) (<field>|<quoted-str>) (<field>|<quoted-str>
)*
Description: Fields should either be key names or quoted literals

 start-opt

Syntax: startswith=<transam-filter-string>
Description: A search or eval filtering expression which if satisfied by an
event marks the beginning of a new transaction
Example: startswith=eval(speed_field < max_speed_field/12)
Example: startswith=(username=foobar)
Example: startswith=eval(speed_field < max_speed_field)
Example: startswith="login"

 startdaysago

Syntax: startdaysago=<int>
Description: A short cut to set the start time. starttime = now - (N days)

 starthoursago

Syntax: starthoursago=<int>
Description: A short cut to set the start time. starttime = now - (N hours)

74

 startminutesago

Syntax: startminutesago=<int>
Description: A short cut to set the start time. starttime = now - (N
minutes)

 startmonthsago

Syntax: startmonthsago=<int>
Description: A short cut to set the start time. starttime = now - (N months)

 starttime

Syntax: starttime=<string>
Description: Events must be later or equal to this time. Must match time
format.

 starttimeu

Syntax: starttimeu=<int>
Description: Set the start time to N seconds since the epoch. (unix time)

 stats-agg

Syntax: <stats-func>("(" (<evaled-field> | <wc-field>)? ")")?
Description: A specifier formed by a aggregation function applied to a
field or set of fields. As of 4.0, it can also be an aggregation function
applied to a arbitrary eval expression. The eval expression must be
wrapped by "{" and "}". If no field is specified in the parenthesis, the
aggregation is applied independently to all fields, and is equivalent to
calling a field value of * When a numeric aggregator is applied to a
not-completely-numeric field no column is generated for that aggregation.
Example: count({sourcetype="splunkd"})
Example: max(size)
Example: stdev(*delay)
Example: avg(kbps)

 stats-agg-term

Syntax: <stats-agg> (as <wc-field>)?
Description: A statistical specifier optionally renamed to a new field
name.
Example: count(device) AS numdevices

75

Example: avg(kbps)

 stats-c

Syntax: count
Description: The count of the occurrences of the field.

 stats-dc

Syntax: distinct-count
Description: The count of distinct values of the field.

 stats-first

Syntax: first
Description: The first seen value of the field.

 stats-func

Syntax:
<stats-c>|<stats-dc>|<stats-mean>|<stats-stdev>|<stats-var>|<stats-sum>|<stats-min>|<stats-max>|<stats-mode>|<stats-median>|<stats-first>|<stats-last>|<stats-perc>|<stats-list>|<stats-values>|<stats-range>
Description: Statistical aggregators.

 stats-last

Syntax: last
Description: The last seen value of the field.

 stats-list

Syntax: list
Description: List of all values of this field as a multi-value entry. Order of
values reflects order of input events.

 stats-max

Syntax: max
Description: The maximum value of the field (lexicographic, if
non-numeric).

76

 stats-mean

Syntax: avg
Description: The arithmetic mean of the field.

 stats-median

Syntax: median
Description: The middle-most value of the field.

 stats-min

Syntax: min
Description: The minimum value of the field (lexicographic, if
non-numeric).

 stats-mode

Syntax: mode
Description: The most frequent value of the field.

 stats-perc

Syntax: perc<int>
Description: The n-th percentile value of this field.

 stats-range

Syntax: range
Description: The difference between max and min (only if numeric)

 stats-stdev

Syntax: stdev|stdevp
Description: The {sample, population} standard deviation of the field.

 stats-sum

Syntax: sum
Description: The sum of the values of the field.

77

 stats-values

Syntax: values
Description: List of all distinct values of this field as a multi-value entry.
Order of values is lexigraphical.

 stats-var

Syntax: var|varp
Description: The {sample, population} variance of the field.

 subsearch

Syntax: [<string>]
Description: Specifies a subsearch.
Example: [search 404 | select url]

 subsearch-options

Syntax: maxtime=<int> | maxout=<int> | timeout=<int>
Description: controls how the subsearch is executed.

 tc-option

Syntax:
<bucketing-option>|(usenull=<bool>)|(useother=<bool>)|(nullstr=<string>)|(otherstr=<string>)
Description: Options for controlling the behavior of splitting by a field. In
addition to the bucketing-option: usenull controls whether or not a series is
created for events that do not contain the split-by field. This series is
labeled by the value of the nullstr option, and defaults to NULL. useother
specifies if a series should be added for data series not included in the
graph because they did not meet the criteria of the <where-clause>. This
series is labeled by the value of the otherstr option, and defaults to
OTHER.
Example: otherstr=OTHERFIELDS
Example: usenull=f
Example: bins=10

 time-modifier

Syntax:
<starttime>|<startdaysago>|<startminutesago>|<starthoursago>|<startmonthsago>|<starttimeu>|<endtime>|<enddaysago>|<endminutesago>|<endhoursago>|<endmonthsago>|<endtimeu>|<searchtimespanhours>|<searchtimespanminutes>|<searchtimespandays>|<searchtimespanmonths>|<daysago>|<minutesago>|<hoursago>|<monthsago>
Description: None

78

 time-opts

Syntax: (<timeformat>)? (<time-modifier>)*
Description: None

 timeformat

Syntax: timeformat=<string>
Description: Set the time format for starttime and endtime terms.
Example: timeformat=%m/%d/%Y:%H:%M:%S

 timescale

Syntax: <ts-sec>|<ts-min>|<ts-hr>|<ts-day>|<ts-month>|<ts-subseconds>
Description: Time scale units.

 timestamp

Syntax: (MM/DD/YY)?:(HH:MM:SS)?|<int>
Description: None
Example: 10/1/07:12:34:56
Example: -5

 top-opt

Syntax:
(showcount=<bool>)|(showperc=<bool>)|(rare=<bool>)|(limit=<int>)|(countfield=<string>)|(percentfield=<string>)
Description: Top arguments: showcount: Whether to create a field called
"count" (see countfield option) with the count of that tuple. (T) showperc:
Whether to create a field called "percent" (see percentfield option) with the
relative prevalence of that tuple. (T) rare: When set and calling as top or
common, evokes the behavior of calling as rare. (F) limit: Specifies how
many tuples to return, 0 returns all values. (10) countfield: Name of new
field to write count to (default is "count") percentfield: Name of new field to
write percentage to (default is "percent")

 transaction-name

Syntax: <string>
Description: The name of a transaction definition from transactions.conf
to be used for finding transactions. If other arguments (e.g., maxspan) are
provided as arguments to transam, they overrule the value specified in the
transaction definition.

79

Example: purchase_transaction

 transam-filter-string

Syntax: "<search-expression>" | (<quoted-search-expression>) |
eval(<eval-expression>)
Description: Where: \i\ <search-expression> is a valid search expression
that does not contain quotes\i\ <quoted-search-expression> is a valid
search expression that contains quotes\i\ <eval-expression> is a valid eval
expression that evaluates to a boolean
Example: eval(distance/time < max_speed)
Example: "user=mildred"
Example: ("search literal")
Example: (name="foo bar")

 trend_type

Syntax: (sma|ema|wma)<num>
Description: The type of trend to compute which consist of a trend type
and trend period (integer between 2 and 10000)
Example: sma10

 ts-day

Syntax: days
Description: Time scale in days.

 ts-hr

Syntax: hours
Description: Time scale in hours.

 ts-min

Syntax: minutes
Description: Time scale in minutes.

 ts-month

Syntax: months
Description: Time scale in months.

80

 ts-sec

Syntax: seconds
Description: Time scale in seconds.

 ts-subseconds

Syntax: us|ms|cs|ds
Description: Time scale in microseconds("us"), milliseconds("ms"),
centiseconds("cs"), or deciseconds("ds")

 txn_definition-opt

Syntax: <maxspan-opt> | <maxpause-opt> | <maxevents-opt> |
<field-list> | <start-opt> | <end-opt> | <connected-opt>
Description: None

 value

Syntax: <lit-value>|<field>
Description: None

 where-clause

Syntax: where <single-agg> <where-comp>
Description: Specifies the criteria for including particular data series
when a field is given in the tc-by-clause. This optional clause, if omitted,
default to "where sum in top10". The aggregation term is applied to each
data series and the result of these aggregations is compared to the
criteria. The most common use of this option is to select for spikes rather
than overall mass of distribution in series selection. The default value finds
the top ten series by area under the curve. Alternately one could replace
sum with max to find the series with the ten highest spikes.
Example: where max < 10
Example: where count notin bottom10
Example: where avg > 100
Example: where sum in top5

 where-comp

Syntax: <wherein-comp>|<wherethresh-comp>
Description: A criteria for the where clause.

81

 wherein-comp

Syntax: (in|notin) (top|bottom)<int>
Description: A where-clause criteria that requires the aggregated series
value be in or not in some top or bottom grouping.
Example: notin top2
Example: in bottom10
Example: in top5

 wherethresh-comp

Syntax: (<|>)()?<num>
Description: A where-clause criteria that requires the aggregated series
value be greater than or less than some numeric threshold.
Example: < 100
Example: > 2.5

 x-field

Syntax: <field>
Description: Field to be used as the x-axis

 y-data-field

Syntax: <field>
Description: Field that contains the data to be charted

 y-name-field

Syntax: <field>
Description: Field that contains the values to be used as data series
labels

82

Search Command Reference

 abstract

 Synopsis

Produces a summary of each search result.

 Syntax

abstract [maxterms=int] [maxlines=int]

 Optional arguments

maxterms
Syntax: maxterms=<int>
Description: The maximum number of terms to match.

maxlines
Syntax: maxlines=<int>
Description: The maximum number of lines to match.

 Description

This data processing command produces an abstract (summary) of each search
result. The importance of a line in being in the summary is scored by how many
search terms it contains as well as how many search terms are on nearby lines.
If a line has a search term, its neighboring lines also partially match, and may be
returned to provide context. When there are jumps between the lines selected,
lines are prefixed with an ellipsis (...).

 Examples

Example 1: Show a summary of up to 5 lines for each search result.

... |abstract maxlines=5

83

 See also

highlight

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has about using the abstract command.

 accum

 Synopsis

Keeps a running total of a specified numeric field.

 Syntax

accum <field> [AS <newfield>]

 Required arguments

field
Syntax: <string>
Description: The name of a field with numeric values.

 Optional arguments

newfield
Syntax: <string>
Description: The name of a field to write the results to.

 Description

For each event where field is a number, keep a running total of the sum of this
number and write it out to either the same field, or a newfield if specified.

 Examples

Example 1: Save the running total of "count" in a field called "total_count".

... | accum count AS total_count

84

 See also

autoregress, delta, streamstats, trendline

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the accum command.

 addcoltotals

 Synopsis

Computes a new event with fields that represent the sum of all numeric fields in
previous events.

 Syntax

addcoltotals [labelfield=<field>] [label=<string>]

 Optional arguments

label
Syntax: label=<string>
Description: If labelfield is specified, it will be added to this summary
event with the value set by the 'label' option.

labelfield
Syntax: labelfield=<field>
Description: Specify a name for the summary event.

 Description

The addcoltotals command adds a new result at the end that represents the
sum of each field. labelfield, if specified, is a field that will be added to this
summary event with the value set by the label option.

 Examples

Example 1: Compute the sums of all the fields, and put the sums in a summary
event called "change_name".

85

... | addcoltotals labelfield=change_name label=ALL

 See also

addtotals, stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the addcoltotals command.

 addinfo

 Synopsis

Add fields that contain common information about the current search.

 Syntax

| addinfo

 Description

Adds global information about the search to each event. Currently the following
fields are added:

info_min_time: the earliest time bound for the search•
info_max_time: the latest time bound for the search•
info_sid: ID of the search that generated the event•
info_search_time: time when the search was executed.•

 Examples

Example 1: Add information about the search to each event.

... |addinfo

 See also

search

86

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the adinfo command.

 addtotals

 Synopsis

Computes the sum of all numeric fields for each result.

 Syntax

addtotals [row=bool] [col=bool] [labelfield=field] [label=string] [fieldname=field]
field-list

 Required arguments

field-list
Syntax: <field>...
Description: One or more numeric fields, delimited with a space, and can
include wildcards.

 Optional arguments

row
Datatype: <bool>
Description: Specifies whether to compute the arithmetic sum of field-list
for each result. Defaults to true.

col
Datatype: <bool>
Description: Specifies whether to add a new result (a summary event)
that represents the sum of each field. Defaults to false.

fieldname
Datatype: <field>
Description: If row=true, use this to specify the name of the field to put
the sum.

label

87

Datatype: <string>
Description: If labelfield is specified, it will be added to this summary
event with the value set by the 'label' option.

labelfield
Datatype: <field>
Description: If col=true, use this to specify a name for the summary
event.

 Description

The default addtotals command (row=true) computes the arithmetic sum of all
numeric fields that match field-list (wildcarded field list). If list is empty all fields
are considered. The sum is placed in the specified field or total if none was
specified.

If col=t, addtotals computes the column totals, which adds a new result at the
end that represents the sum of each field. labelfield, if specified, is a field
that will be added to this summary event with the value set by the 'label' option.
Alternately, instead of using | addtotals col=true, you can use the addcoltotals
command to calculate a summary event.

 Examples

Example 1: Compute the sums of the numeric fields of each results.

... | addtotals

Example 2: Calculate the sums of the numeric fields of each result, and put the
sums in the field "sum".

... | addtotals fieldname=sum

Example 3: Compute the sums of the numeric fields that match the given list,
and save the sums in the field "sum".

... | addtotals fieldname=sum foobar* *baz*

Example 4: Compute the sums of all the fields, and put the sums in a summary
event called "change_name".

... | addtotals col=t labelfield=change_name label=ALL

88

 See also

stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the addtotals command.

 analyzefields

 Synopsis

Analyzes numerical fields for their ability to predict another discrete field.

 Syntax

af | analyzefields classfield=field

 Required arguments

classfield
Syntax: classfield=<field>
Description: For best results, classfield should have 2 distinct values,
although multi-class analysis is possible.

 Description

Using field as a discrete random variable, analyze all *numerical* fields to
determine the ability for each of those fields to predict the value of the classfield.
For best results, classfield should have 2 distinct values, although multi-class
analysis is possible.

The analyzefields command returns a table with five columns: field, count,
cocur, acc, and balacc.

field is the name of the field in the search results.•
count is the number of occurrences of the field in the search results.•
cocur is the cocurrence of the field versus the classfield. The cocur is 1
if field exists in every event that has classfield.

•

89

acc is the accuracy in predicting the value of the classfield using the
value of the field. This is only valid for numerical fields.

•

balacc, or "balanced accuracy", is the non-weighted average of the
accuracies in predicted each value of the classfield. This is only valid for
numerical fields.

•

 Examples

Example 1: Analyze the numerical fields to predict the value of "is_activated".

... | af classfield=is_activated

 See also

anomalousvalue

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the analyzefields command.

 anomalies

Use the anomalies command to look for events that you don't expect to find
based on the values of a field in a sliding set of events. The anomalies command
assigns an unexpectedness score to each event in a new field named
unexpectedness. Whether the event is considered anomalous or not depends on
a threshold value that is compared against the calculated unexpectedness
score. The event is considered unexpected or anomalous if the unexpectedness
> threshold.

Note: After you run anomalies in the timeline Search view, add the
unexpectedness field to your events list using the Pick fields menu.

 Synopsis

Computes an unexpectedness score for an event.

 Syntax

anomalies [threshold=num] [labelonly=bool] [normalize=bool] [maxvalues=int]
[field=field] [blacklist=filename] [blacklistthreshold=num] [by-clause]

90

 Optional arguments

threshold
Datatype: threshold=<num>
Description: A number to represent the unexpectedness limit. If an
event's calculated unexpectedness is greater than this limit, the event is
considered unexpected or anomalous. Defaults to 0.01.

labelonly
Datatype: labelonly=<bool>
Description: Specify how you want to output to be returned. The
unexpectedness field is appended to all events. If set to true, no events are
removed. If set to false, events that have a unexpected score less than the
threshold (boring events) are removed. Defaults to false.

normalize
Datatype: normalize=<bool>
Description: Specify whether or not to normalize numeric values. For
cases where field contains numeric data that should not be normalized,
but treated as categories, set normalize=false. Defaults to true.

maxvalues
Datatype: maxvalues=<int>
Description: Specify the size of the sliding window of previous events to
include when determining the unexpectedness of an event's field value.
This number is between 10 and 10000. Defaults to 100.

field
Datatype: field=<field>
Description: The field to analyze when determining the unexpectedness
of an event. Defaults to _raw.

blacklist
Datatype: blacklist=<filename>
Description: A name of a CSV file of events that is located in
$SPLUNK_HOME/var/run/splunk/BLACKLIST.csv. Any incoming event
that is similar to an event in the blacklist is treated as not anomalous (that
is, uninteresting) and given an unexpectedness score of 0.0.

blacklistthreshold
Datatype: blacklistthreshold=<num>
Description: Specify similarity score threshold for matching incoming
events to blacklisted events. If the incoming event has a similarity score

91

above the blacklistthreshold, it is marked as unexpected. Defaults to
0.05.

by clause
Syntax: by <fieldlist>
Description: Used to specify a list of fields to segregate results for
anomaly detection. For each combination of values for the specified
field(s), events with those values are treated entirely separately.

 Description

For those interested in how the unexpected score of an event is calculated, the
algorithm is proprietary, but roughly speaking, it is based on the similarity of that
event (X) to a set of previous events (P):

unexpectedness = [s(P and X) - s(P)] / [s(P) + s(X)]

Here, s() is a metric of how similar or uniform the data is. This formula provides
a measure of how much adding X affects the similarity of the set of events and
also normalizes for the differing event sizes.

You can run the anomalies command again on the results of a previous
anomalies, to further narrow down the results. As each run operates over 100
events, the second call to anomalies is approximately running over a window of
10,000 previous events.

 Examples

Example 1: This example just shows how you can tune the search for anomalies
using the threshold value.

index=_internal | anomalies by group | search group=*

This search looks at events in the _internal index and calculates the
unexpectedness score for sets of events that have the same group value. This
means that the sliding set of events used to calculate the unexpectedness for
each unique group value will only include events that have the same group value.
The search command is then used to show only events that include the group
field. Here's a snapshot of the results:

92

With the default threshold=0.01, you can see that some of these events may be
very similar. This next search increases the threshold a little:

index=_internal | anomalies threshold=0.03 by group | search group=*

With the higher threshold value, you can see at-a-glance that there is more
distinction between each of the events (the timestamps and key/value pairs).

Also, you might not want to hide the events that are not anomalous. Instead, you
can add another field to your events that tells you whether or not the event is
interesting to you. One way to do this is with the eval command:

index=_internal | anomalies threshold=0.03 labelonly=true by group |
search group=* | eval threshold=0.03 | eval

score=if(unexpectedness>=threshold, "anomalous", "boring")

This search uses labelonly=true so that the boring events are still retained in
the results list. The eval command is used to define a field named threshold and
set it to the value. This has to be done explicitly because the threshold attribute
of the anomalies command is not a field. The eval command is then used to
define another new field, score, that is either "anomalous" or "boring" based on
how the unexpectedness compares to the threshold value. Here's a snapshot of
these results:

93

 More examples

Example 1: Show most interesting events first, ignoring any in the blacklist
'boringevents'.

... | anomalies blacklist=boringevents | sort -unexpectedness

Example 2: Use with transactions to find regions of time that look unusual.

... | transaction maxpause=2s | anomalies

Example 3: Look for anomalies in each source separately -- a pattern in one
source will not affect that it is anomalous in another source.

... | anomalies by source

 See also

anomalousvalue, cluster, kmeans, outlier

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the anomalies command.

 anomalousvalue

 Synopsis

Finds and summarizes irregular, or uncommon, search results.

 Syntax

anomalousvalue <av-option> [action] [pthresh] [field-list]

94

 Required arguments

<av-option>
Syntax: minsupcount=<integer> | maxanofreq=<float> |
minsupfreq=<float> | minnormfreq=<float>
Description: Fields that occur only in a couple of events aren't very
informative (which one of three values is anomalous?). minsupcount,
maxanofreq, minsupfreq, and minnormfreq set thresholds to filter out
these uninformative fields.

maxanofreq=p Omits a field from consideration if more than a fraction p of
the events that it appears in would be considered anomalous.

•

minnormfreq=p Omits a field from consideration if less than a fraction p of
the events that it appears in would be considered normal.

•

minsupcount=N Specifies that a field must appear in at least N of the
events anomalousvalue processes to be considered for deciding which
fields are anomalous.

•

minsupfreq=p Identical to minsupcount, but instead of specifying an
absolute number N of events, specify a minimum fraction of events p
(between 0 and 1).

•

 Optional arguments

action
Syntax: action=annotate | filter | summary
Description: Specify whether to return the anomaly score (annotate), filter
out events with anomalous values (filter), or a summary of anomaly
statistics (summary). Defaults to filter.

If action is annotate, a new field is added to the event containing the
anomalous value that indicates the anomaly score of the value.

•

If action is filter, events with anomalous value(s) are isolated.•
If action is summary, a table summarizing the anomaly statistics for each
field is generated.

•

field-list
Syntax: <field>, ...
Description: List of fields to consider.

pthresh
Syntax: pthresh=<num>
Description: Probability threshold (as a decimal) that has to be met for a
value to be considered anomalous. Defaults to 0.01.

95

 Description

The anomalousvalue command looks at the entire event set and considers the
distribution of values when deciding if a value is anomalous or not. For numerical
fields, it identifies or summarizes the values in the data that are anomalous either
by frequency of occurrence or number of standard deviations from the mean.

 Examples

Example 1: Return only uncommon values from the search results.

... | anomalousvalue

This is the same as running the following search:

...| anomalousvalue action=filter pthresh=0.01

.

Example 2: Return uncommon values from the host "reports".

host="reports" | anomalousvalue action=filter pthresh=0.02

Example 3: Return a summary of the anomaly statistics for each numeric field.

source=/var/log* | anomalousvalue action=summary pthresh=0.02 | search

isNum=YES

 See also

af, analyzefields, anomalies, cluster, kmeans, outlier

96

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the anomalousvalue command.

 append

Use the append command to append the results of a subsearch to the results of
your current search. The append command will run only over historical data; it will
not produce correct results if used in a real-time search.

 Synopsis

Appends subsearch results to current results.

 Syntax

append [subsearch-options]* subsearch

 Required arguments

subsearch
Description: A search pipeline. Read more about how subsearches work
in the Search manual.

 Optional arguments

subsearch-options
Syntax: maxtime=<int> | maxout=<int> | timeout=<int>
Description: Controls how the subsearch is executed.

 Subsearch options

maxtime
Syntax: maxtime=<int>
Description: The maximum time (in seconds) to spend on the subsearch
before automatically finalizing. Defaults to 60.

maxout
Syntax: maxout=<int>

97

Description: The maximum number of result rows to output from the
subsearch. Defaults to 50000.

timeout
Syntax: timeout=<int>
Description: The maximum time (in seconds) to wait for subsearch to
fully finish. Defaults to 120.

 Description

Append the results of a subsearch to the current search as new results at the
end of current results.

 Examples

 Example 1

This example uses recent (October 18-25, 2010) earthquake data downloaded from the USGS
Earthquakes website. The data is a comma separated ASCII text file that contains the source
network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of reporting
stations (NST) for each earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below.
Count the number of earthquakes that occurred in and around California
yesterday and then calculate the total number of quakes.

source="eqs7day-M1.csv" Region="*California" | stats count by Region |
append [search source="eqs7day-M1.csv" Region="*California" | stats

count]

This example searches for all the earthquakes in the California regions
(Region="*California"), then counts the number of earthquakes that occurred in
each separate region.

The stats command doesn't let you count the total number of events at the same
time as you count the number of events split-by a field, so the subsearch is used
to count the total number of earthquakes that occurred. This count is added to
the results of the previous search with the append command.

Because both searches share the count field, the results of the subsearch is
listed as the last row in the column:

98

This search basically demonstrates using the append command similar to the
addcoltotals command, to add the column totals.

 Example 2

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Count the number of different customers who purchased something from the
Flower & Gift shop yesterday, and break this count down by the type of product
(Candy, Flowers, Gifts, Plants, and Balloons) they purchased. Also, list the top
purchaser for each type of product and how much that person bought of that
product.

sourcetype=access_* action=purchase | stats dc(clientip) by category_id
| append [search sourcetype=access_* action=purchase | top 1 clientip

by category_id] | table category_id, dc(clientip), clientip, count

This example first searches for purchase events (action=purchase). These
results are pipped into the stats command and the dc() or distinct_count()
function is used to count the number of different users who make purchases. The
by clause is used to break up this number based on the different category of
products (category_id).

The subsearch is used to search for purchase events and count the top
purchaser (based on clientip) for each category of products. These results are
added to the results of the previous search using the append command.

Here, the table command is used to display only the category of products
(category_id), the distinct count of users who bought each type of product
(dc(clientip)), the actual user who bought the most of a product type
(clientip), and the number of each product that user bought (count).

99

You can see that the append command just tacks on the results of the subsearch
to the end of the previous search, even though the results share the same field
values. It doesn't let you manipulate or reformat the output.

 Example 3

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from this topic in the tutorial and
follow the instructions to upload it to Splunk. Then, run this search using the
time range, Other > Yesterday.
Count the number of different IP addresses who accessed the Web server and
also find the user who accessed the Web server the most for each type of page
request (method).

sourcetype=access_* | stats dc(clientip), count by method | append

[search sourcetype=access_* | top 1 clientip by method]

The Web access events are piped into the stats command and the dc() or
distinct_count() function is used to count the number of different users who
accessed the site. The count() function is used to count the total number of
times the site was accessed. These numbers are separated by the page request
(method).

The subsearch is used to find the top user for each type of page request
(method). The append command is used to add the result of the subsearch to the
bottom of the table:

The first two rows are the results of the first search. The last two rows are the
results of the subsearch. Both result sets share the method and count fields.

100

 More examples

Example 1: Append the current results with the tabular results of "fubar".

... | chart count by bar | append [search fubar | chart count by baz]

 See also

appendcols, join, set

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the append command.

 appendcols

 Synopsis

Appends the fields of the subsearch results to current results, first results to first
result, second to second, etc.

 Syntax

appendcols [override=bool|subsearch-options]* subsearch

 Required arguments

subsearch
Description: A search pipeline. Read more about how subsearches work
in the Search manual.

 Optional arguments

override
Datatype: <bool>
Description: If option override is false (default), if a field is present in both
a subsearch result and the main result, the main result is used.

subsearch-options
Syntax: maxtime=<int> | maxout=<int> | timeout=<int>
Description: Controls how the subsearch is executed.

101

 Subsearch options

maxtime
Syntax: maxtime=<int>
Description: The maximum time (in seconds) to spend on the subsearch
before automatically finalizing. Defaults to 60.

maxout
Syntax: maxout=<int>
Description: The maximum number of result rows to output from the
subsearch. Defaults to 50000.

timeout
Syntax: timeout=<int>
Description: The maximum time (in seconds) to wait for subsearch to
fully finish. Defaults to 120.

 Description

Appends fields of the results of the subsearch into input search results by
combining the external fields of the subsearch (fields that do not start with '_')
into the current results. The first subsearch result is merged with the first main
result, the second with the second, and so on. If option override is false (default),
if a field is present in both a subsearch result and the main result, the main result
is used. If it is true, the subsearch result's value for that field is used.

 Examples

Example 1: Search for "404" events and append the fields in each event to the
previous search results.

... | appendcols [search 404]

 See also

append, join, set

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the appendcols command.

102

 appendpipe

 Synopsis

Appends the result of the subpipeline applied to the current result set to results.

 Syntax

appendpipe [run_in_preview=<bool>] [<subpipeline>]

 Arguments

run_in_preview
Syntax: run_in_preview=T|F
Description: Specify whether or not to run the command in preview
mode. Defaults to T.

 Examples

Example 1: Append subtotals for each action across all users.

index=_audit | stats count by action user | appendpipe [stats sum(count)

as count by action | eval user = "ALL USERS"] | sort action

 See also

append, appendcols, join, set

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the appendpipe command.

 associate

The associate command tries to find a relationship between pairs of fields by
calculating a change in entropy based on their values. This entropy represents
whether knowing the value of one field helps to predict the value of another field.

In Information Theory, entropy is defined as a measure of the uncertainty
associated with a random variable. In this case, if a field has only one unique

103

value, it has an entropy of zero. If it has multiple values, the more evenly those
values are distributed, the higher the entropy.

 Synopsis

Identifies correlations between fields.

 Syntax

associate [associate-option]* [field-list]

 Optional arguments

associate-option
Syntax: supcnt | supfreq | improv
Description: Options for the associate command.

field-list
Syntax: <field>, ...
Description: List of fields, non-wildcarded. If a list of fields is provided,
analysis will be restricted to only those fields. By default all fields are used.

 Associate options

supcnt
Syntax: supcnt=<num>
Description: Specify the minimum number of times that the "reference
key=reference value" combination must appear. Must be a non-negative
integer. Defaults to 100.

supfreq
Syntax: supfreq=<num>
Description: Specify the minimum frequency of "reference key=reference
value" combination as a fraction of the number of total events. Defaults to
0.1.

improv
Syntax: improv=<num>
Description: Specify a limit, or minimum entropy improvement, for the
"target key". The resulting calculated entropy improvement, which is the
difference between the unconditional entropy (the entropy of the target
key) and the conditional entropy (the entropy of the target key, when the
reference key is the reference value) must be greater than or equal to this

104

limit. Defaults to 0.5.

 Description

The associate command outputs a table with columns that include the fields that
are analyzed (Reference_Key, Reference_Value, and Target_Key), the entropy
that is calculated for each pair of field values (Unconditional_Entropy,
Conditional_Entropy, and Entropy_Improvement), and a message that
summarizes the relationship between the fields values that is deduced based on
the entropy calculation (Description).

The Description is intended as a user-friendly representation of the result, and is
written in the format: "When the 'Reference_Key' has the value 'Reference_Value',
the entropy of 'Target_Key' decreases from Unconditional_Entropy to
Conditional_Entropy."

 Examples

Example 1: This example demonstrates how you might analyze the relationship
of fields in your web access logs.

sourcetype=access_* NOT status=200 | fields method, status | associate
| table Reference_Key, Reference_Value, Target_Key,

Top_Conditional_Value, Description

The first part of this search retrieves web access events that returned a status
that is not 200. Web access data contains a lot of fields and you can use the
associate command to see a relationship between all pairs of fields and values
in your data. To simplify this example, we restrict the search to two fields: method
and status. Also, the associate command outputs a number of columns (see
Description) that, for now, we won't go into; so, we use the table command to
display only the columns we want to see. The result looks something like this:

For this particular result set, (you can see in the Fields area, to the left of the
results area) there are:

two method values: POST and GET•
five status values: 301, 302, 304, 404, and 503•

105

The first row of the results tells you that when method=POST, the status field is 302
for all of those events. The associate command concludes that, if method=POST,
the status is likely to be 302. You can see this same conclusion in the third row,
which references status=302 to predict the value of method.

The Reference_Key and Reference_Value are being correlated to the
Target_Key. The Top_Conditional_Value field states three things: the most
common value for the given Reference_Value, the frequency of the
Reference_Value for that field in the dataset, and the frequency of the most
common associated value in the Target_Key for the events that have the specific
Reference_Value in that Reference Key. It is formatted "CV (FRV% -> FCV%)"
where CV is the conditional Value, FRV is is the percentage occurrence of the
reference value, and FCV is the percentage of occurence for that conditional
value, in the case of the reference value.

Note: This example uses sample data from the Splunk Tutorial. which you can
download and add to run this search and see these results. For more
information, refer to "Get the sample data into Splunk" in the Tutorial.

Example 2: Return results associated with each other (that have at least 3
references to each other).

index=_internal sourcetype=splunkd | associate supcnt=3

Example 3: Analyze all events from host "reports" and return results associated
with each other.

host="reports" | associate supcnt=50 supfreq=0.2 improv=0.5

 See also

correlate, contingency

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the associate command.

 audit

106

 Synopsis

Returns audit trail information that is stored in the local audit index.

 Syntax

audit

 Description

View audit trail information stored in the local audit index. Also decrypt signed
audit events while checking for gaps and tampering.

 Examples

Example 1: View information in the "audit" index.

index="_audit" | audit

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the audit command.

 autoregress

 Synopsis

Sets up data for calculating the moving average.

 Syntax

autoregress field [AS <newfield>] [p=<p_start>[-<p_end>]]

 Required arguments

field-list
Syntax: <field>...
Description: One or more numeric fields, delimited with a space, and can
not include wildcards.

107

 Optional arguments

p
Syntax: p=<int:p_start>
Description: If 'p' option is unspecified, it is equivalent to p_start = p_end
= 1 (i.e., copy only the previous one value of field into field_p1

newfield
Syntax: <field>
Description: note that p cannot be a range if newfield is specified.

p_start
Syntax: <int>
Description: If 'p' option is unspecified, it is equivalent to p_start = p_end
= 1 (i.e., copy only the previous one value of field into field_p1

p_end
Syntax: <int>
Description: If 'p' option is unspecified, it is equivalent to p_start = p_end
= 1 (i.e., copy only the previous one value of field into field_p1

 Description

Sets up data for auto-regression (moving average) by copying the p-th previous
values for field into each event as newfield (or if unspecified, new fields
field_pp-val for p-val = p_start-p_end). If 'p' option is unspecified, it is equivalent
to p_start = p_end = 1 (i.e., copy only the previous one value of field into
field_p1. Note that p cannot be a range if newfield is specified.

 Examples

Example 1: For each event, copy the 3rd previous value of the 'foo' field into the
field 'oldfoo'.

... | autoregress foo AS oldfoo p=3

Example 2: For each event, copy the 2nd, 3rd, 4th, and 5th previous values of
the 'count' field into the respective fields 'count_p2', 'count_p3', 'count_p4', and
'count_p5'.

... | autoregress count p=2-5

108

 See also

accum, delta, streamstats, trendline

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has about using the autoregress command.

 bucket

 Synopsis

Puts continuous numerical values into discrete sets.

 Syntax

bucket [<bucketing-option>]* <field> [as <field>]

 Required arguments

<field>
Datatype: <field>
Description: Specify a field name.

 Optional arguments

<bucketing-option>
Datatype: bins | minspan | span | start-end
Description: Discretization options. See "Bucketing options" for details.

<newfield>
Datatype: <string>
Description: A new name for the field.

 Bucketing options

bins
Syntax: bins=<int>
Description: Sets the maximum number of bins to discretize into.

109

minspan
Syntax: minspan=<span-length>
Description: Specifies the smallest span granularity to use automatically
inferring span from the data time range.

span
Syntax: span = <log-span> | <span-length>
Description: Sets the size of each bucket, using a span length based on
time or log-based span.

<start-end>
Syntax: end=<num> | start=<num>
Description:Sets the minimum and maximum extents for numerical
buckets. Data outside of the [start, end] range is discarded.

 Log span syntax

<log-span>
Syntax: [<num>]log[<num>]
Description: Sets to log-based span. The first number is a coefficient.
The second number is the base. If the first number is supplied, it must be
a real number >= 1.0 and < base. Base, if supplied, must be real number
> 1.0 (strictly greater than 1).

 Span length syntax

span-length
Syntax: [<timescale>]
Description: A span length based on time.

Syntax: <int>
Description: The span of each bin. If using a timescale, this is used as a
time range. If not, this is an absolute bucket "length."

<timescale>
Syntax: <sec> | <min> | <hr> | <day> | <month> | <subseconds>
Description: Time scale units.

<sec>
Syntax: s | sec | secs | second | seconds
Description: Time scale in seconds.

110

<min>
Syntax: m | min | mins | minute | minutes
Description: Time scale in minutes.

<hr>
Syntax: h | hr | hrs | hour | hours
Description: Time scale in hours.

<day>
Syntax: d | day | days
Description: Time scale in days.

<month>
Syntax: mon | month | months
Description: Time scale in months.

<subseconds>
Syntax: us | ms | cs | ds
Description: Time scale in microseconds (us), milliseconds (ms),
centiseconds (cs), or deciseconds (ds).

 Description

Puts continuous numerical values in fields into discrete sets, or buckets. The
default field processed is _time. Note: Bucket is called by chart and timechart
automatically and is only needed for statistical operations that timechart and
chart cannot process.

 Examples

Example 1: Return the average "thruput" of each "host" for each 5 minute time
span.

... | bucket _time span=5m | stats avg(thruput) by _time host

Example 2: Bucket search results into 10 bins, and return the count of raw
events for each bucket.

... | bucket size bins=10 | stats count(_raw) by size

 See also

chart, timechart

111

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the bucket command.

 bucketdir

 Synopsis

Replaces a field value with higher-level grouping, such as replacing filenames
with directories.

 Syntax

bucketdir pathfield=<field> sizefield=<field> [maxcount=<int>] [countfield=<field>]
[sep=<char>]

 Required arguments

pathfield
Syntax: pathfield=<field>
Description: Specify a field name that has a path value.

sizefield
Syntax: sizefield=<field>
Description: Specify a numeric field that defines the size of bucket.

 Optional arguments

countfield
Syntax: countfield=<field>
Description: Specify a numeric field that describes the count of events.

maxcount
Syntax: maxcount=<int>
Description: Specify the total number of events to bucket.

sep
Syntax: <char>
Description: Specify either "/" or "\\" as the separating character. This
depends on the operating system.

112

 Description

Returns at most MAXCOUNT events by taking the incoming events and rolling
up multiple sources into directories, by preferring directories that have many files
but few events. The field with the path is PATHFIELD (e.g., source), and strings
are broken up by a SEP character. The default pathfield=source;
sizefield=totalCount; maxcount=20; countfield=totalCount; sep="/" or "\\",
depending on the os.

 Examples

Example 1: Get 10 best sources and directories.

... | top source | bucketdir pathfield=source sizefield=count

maxcount=10

 See also

cluster, dedup

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the bucket command.

 chart

Use the chart command to create charts that can display any series of data that
you want to plot. You can decide what field is tracked on the x-axis of the chart.
The chart, timechart, stats, eventstats, and streamstats are all designed to
work in conjunction with statistical functions. To find more information about
statistical functions and how they're used, see "Functions for stats, chart, and
timechart" in the Search Reference Manual.

 Synopsis

Returns results in a tabular output for charting.

 Syntax

chart [sep=<string>] [cont=<bool>] [limit=<int>] [agg=<stats-agg-term>] (
<stats-agg-term> | <sparkline-agg-term> | <eval-expression>...) [by <field>

113

(<bucketing-option>)... [<split-by-clause>]] | [over <field>
(<bucketing-option>)... (by <split-by-clause>]]

For a list of chart functions with descriptions and examples, see "Functions for
stats, chart, and timechart".

 Required arguments

agg
Syntax: agg=<stats-agg-term>
Description: Specify an aggregator or function. For a list of stats
functions with descriptions and examples, see "Functions for stats, chart,
and timechart".

sparkline-agg-term
Syntax: <sparkline-agg> [AS <wc-field>]
Description: A sparkline specifier optionall renamed to a new field.

eval-expression
Syntax: <eval-math-exp> | <eval-concat-exp> | <eval-compare-exp> |
<eval-bool-exp> | <eval-function-call>
Description: A combination of literals, fields, operators, and functions that
represent the value of your destination field. For more information, see the
Functions for eval. For these evaluations to work, your values need to be
valid for the type of operation. For example, with the exception of addition,
arithmetic operations may not produce valid results if the values are not
numerical. Additionally, Splunk can concatenate the two operands if they
are both strings. When concatenating values with '.', Splunk treats both
values as strings regardless of their actual type.

 Optional arguments

agg
Syntax: <stats-agg-term>
Description: For a list of stats functions with descriptions and examples,
see "Functions for stats, chart, and timechart".

bucketing-option
Syntax: bins | span | <start-end>
Description: Discretization options. If a bucketing option is not supplied,
timechart defaults to bins=300. This finds the smallest bucket size that
results in no more than 300 distinct buckets. For more bucketing options,
see the bucket command reference.

114

cont
Syntax: <bool>
Description: Specifies whether its continuous or not.

limit
Syntax: <int>
Description: Specify a limit for series filtering; limit=0 means no filtering.

single-agg
Syntax: count|<stats-func>(<field>)
Description: A single aggregation applied to a single field (can be evaled
field). No wildcards are allowed. The field must be specified, except when
using the special count aggregator that applies to events as a whole.

sep
Syntax: sep=<string>
Description: Used to construct output field names when multiple data
series are used in conjunctions with a split-by field.

split-by-clause
Syntax: <field> (<tc-option>)* [<where-clause>]
Description: Specifies a field to split by. If field is numerical, default
discretization is applied; discretization is defined with tc-option.

 Stats functions

stats-agg-term
Syntax: <stats-func>(<evaled-field> | <wc-field>) [AS <wc-field>]
Description: A statistical specifier optionally renamed to a new field
name. The specifier can be by an aggregation function applied to a field or
set of fields or an aggregation function applied to an arbitrary eval
expression.

stats-function
Syntax: avg() | c() | count() | dc() | distinct_count() | earliest() | estdc() |
estdc_error() | exactperc<int>() | first() | last() | latest() | list() | max() |
median() | min() | mode() | p<in>() | perc<int>() | range() | stdev() | stdevp()
| sum() | sumsq() | upperperc<int>() | values() | var() | varp()
Description: Functions used with the stats command. Each time you
invoke the stats command, you can use more than one function;
however, you can only use one by clause. For a list of stats functions with
descriptions and examples, see "Functions for stats, chart, and timechart".

115

 Sparkline function options

Sparklines are inline charts that appear within table cells in search results and
display time-based trends associated with the primary key of each row. Read
more about how to "Add sparklines to your search results" in the Search Manual.

sparkline-agg
Syntax: sparkline (count(<wc-field>), <span-length>) | sparkline
(<sparkline-func>(<wc-field>), <span-length>)
Description: A sparkline specifier, which takes the first argument of an
aggregation function on a field and an optional timespan specifier. If no
timespan specifier is used, an appropriate timespan is chosen based on
the time range of the search. If the sparkline is not scoped to a field, only
the count aggregator is permitted.

sparkline-func
Syntax: c() | count() | dc() | mean() | avg() | stdev() | stdevp() | var() |
varp() | sum() | sumsq() | min() | max() | range()
Description: Aggregation function to use to generate sparkline values.
Each sparkline value is produced by applying this aggregation to the
events that fall into each particular time bucket.

 Bucketing options

bins
Syntax: bins=<int>
Description: Sets the maximum number of bins to discretize into.

span
Syntax: span=<log-span> | span=<span-length>
Description: Sets the size of each bucket, using a span length based on
time or log-based span.

<start-end>
Syntax: end=<num> | start=<num>
Description:Sets the minimum and maximum extents for numerical
buckets. Data outside of the [start, end] range is discarded.

116

 Log span syntax

<log-span>
Syntax: [<num>]log[<num>]
Description: Sets to log-based span. The first number is a coefficient.
The second number is the base. If the first number is supplied, it must be
a real number >= 1.0 and < base. Base, if supplied, must be real number
> 1.0 (strictly greater than 1).

 Span length syntax

span-length
Syntax: [<timescale>]
Description: A span length based on time.

Syntax: <int>
Description: The span of each bin. If using a timescale, this is used as a
time range. If not, this is an absolute bucket "length."

<timescale>
Syntax: <sec> | <min> | <hr> | <day> | <month> | <subseconds>
Description: Time scale units.

<sec>
Syntax: s | sec | secs | second | seconds
Description: Time scale in seconds.

<min>
Syntax: m | min | mins | minute | minutes
Description: Time scale in minutes.

<hr>
Syntax: h | hr | hrs | hour | hours
Description: Time scale in hours.

<day>
Syntax: d | day | days
Description: Time scale in days.

<month>
Syntax: mon | month | months
Description: Time scale in months.

117

<subseconds>
Syntax: us | ms | cs | ds
Description: Time scale in microseconds (us), milliseconds (ms),
centiseconds (cs), or deciseconds (ds).

 tc options

tc-option
Syntax: <bucketing-option> | usenull=<bool> | useother=<bool> |
nullstr=<string> | otherstr=<string>
Description: Options for controlling the behavior of splitting by a field.

usenull
Syntax: usenull=<bool>
Description: Controls whether or not a series is created for events that do
not contain the split-by field.

nullstr
Syntax: nullstr=<string>
Description: If usenull is true, this series is labeled by the value of the
nullstr option, and defaults to NULL.

useother
Syntax: useother=<bool>
Description: Specifies if a series should be added for data series not
included in the graph because they did not meet the criteria of the
<where-clause>.

otherstr
String: otherstr=<string>
Description: If useother is true, this series is labeled by the value of the
otherstr option, and defaults to OTHER.

 where clause

where clause
Syntax: <single-agg> <where-comp>
Description: Specifies the criteria for including particular data series
when a field is given in the tc-by-clause. The most common use of this
option is to select for spikes rather than overall mass of distribution in
series selection. The default value finds the top ten series by area under
the curve. Alternately one could replace sum with max to find the series
with the ten highest spikes.This has no relation to the where command.

118

<where-comp>
Syntax: <wherein-comp> | <wherethresh-comp>
Description: A criteria for the where clause.

<wherein-comp>
Syntax: (in|notin) (top|bottom)<int>
Description: A where-clause criteria that requires the aggregated series
value be in or not in some top or bottom grouping.

<wherethresh-comp>
Syntax: (<|>)()?<num>
Description: A where-clause criteria that requires the aggregated series
value be greater than or less than some numeric threshold.

 Description

Create tabular data output suitable for charting. The x-axis variable is specified
with a by field and is discretized if necessary. Charted fields are converted to
numerical quantities if necessary.

Whereas timechart generates a chart with _time as the x-axis, chart produces a
table with an arbitrary field as the x-axis. In addition, chart allows for a split-by
field. When such a field is included, the output will be a table where each column
represents a distinct value of the split-by field.

This is in contrast with stats, where each row represents a single unique
combination of values of the group-by fields. The number of columns to be
included is by default limited to 10, but can be adjusted by the inclusion of an
optional where clause. See where-clause for a more detailed description.

Chart allows for an eval-expression, which is required to be renamed unless a
split-by clause is present. You can also specify the the x-axis field after the over
keyword, before any by and subsequent split-by clause. The limit and agg
options allow easier specification of series filtering. The limit=0 means no series
filtering. The limit and agg options are ignored if an explicit where clause is
provided.

 A note about split-by fields

If you use chart or timechart, you cannot use a field that you specify in a
function as your split-by field as well. For example, you will not be able to run:

... | chart sum(A) by A span=log2

119

However, you can work around this with an eval expression, for example:

... | eval A1=A | chart sum(A) by A1 span=log2

 Examples

 Example 1

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from this topic in the tutorial and
follow the instructions to upload it to Splunk. Then, run this search using the
time range, Other > Yesterday.
Chart the number of different page requests, GET and POST, that occurred for
each Web server.

sourcetype=access_* | chart count(eval(method="GET")) AS GET,

count(eval(method="POST")) AS POST by host

This example uses eval expressions to specify the different field values for the
stats command to count. The first clause uses the count() function to count the
Web access events that contain the method field value GET. Then, it renames the
field that represents these results to "GET" (this is what the "AS" is doing). The
second clause does the same for POST events. The counts of both types of
events are then separated by the Web server, indicated by the host field, from
which they appeared.

This returns the following table:

Click Show report to format the chart in Report Builder. Here, the y-axis is
shown on a logarithmic scale:

120

This chart displays the total count of events for each event type, GET or POST,
based on the host value. The logarithmic scale is used for the y-axis because of
the difference in range of vales between the number of GET and POST events.

Note: You can use the stats, chart, and timechart commands to perform the
same statistical calculations on your data. The stats command returns a table of
results. The chart command returns the same table of results, but you can use
the Report Builder to format this table as a chart. If you want to chart your results
over a time range, use the timechart command. You can also see variations of
this example with the chart and timechart commands.

 Example 2

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, All time.
Create a chart to show the number of transactions based on their duration (in
seconds).

sourcetype=access_* action=purchase | transaction clientip maxspan=10m

| chart count by duration span=log2

This search uses the transaction command to define a transaction as events
that share the clientip field and fit within a ten minute time span. The
transaction command creates a new field called duration, which is the
difference between the timestamps for the first and last events in the transaction.
(Because maxspan=10s, the duration value should not be greater than this.)

The transactions are then piped into the chart command. The count() function is
used to count the number of transactions and separate the count by the duration
of each transaction. Because the duration is in seconds and you expect there to
be many values, the search uses the span argument to bucket the duration into
bins of log2 (span=log2). This produces the following table:

121

Click Show report to format the chart in Report Builder. Here, it's formatted as a
column chart:

As you would expect, most transactions take between 0 and 2 seconds to
complete. Here, it looks like the next greater number of transactions spanned
between 256 and 512 seconds (approximately, 4-8 minutes). (In this case
however, the numbers may be a bit extreme because of the way that the data
was generated.)

 Example 3

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, All time.
Create a chart to show the average number of events in a transaction based on
the duration of the transaction.

122

sourcetype=access_* action=purchase | transaction clientip maxspan=10m

| chart avg(eventcount) by duration span=log2

This example uses the same transaction defined in Example 2. The transaction
command also creates a new field called eventcount, which is the number of
events in a single transaction.

The transactions are then piped into the chart command and the avg() function
is used to calculate the average number of events for each duration. Because the
duration is in seconds and you expect there to be many values, the search uses
the span argument to bucket the duration into bins of log2 (span=log2). This
produces the following table:

Click Show report to format the chart in Report Builder. Here, it's formatted as a
pie chart:

Each wedge of the pie chart represents the average number of events in the
transactions of the corresponding duration. After you create the pie chart, you
can mouseover each of the sections to see these values (in Splunk Web).

123

 Example 4

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Chart how many different people bought something and what they bought at the
Flower & Gift shop Yesterday.

sourcetype=access_* action=purchase | chart dc(clientip) over date_hour

by category_id usenull=f

This search takes the purchase events and pipes it into the chart command. The
dc() or distinct_count() function is used to count the number of unique visitors
(characterized by the clientip field). This number is then charted over each hour
of the day and broken out based on the category_id of the purchase. Also,
because these are numeric values, the search uses the usenull=f argument to
exclude fields that don't have a value.

This produces the following table:

Click Show report to format the chart in Report Builder. Here, it's formatted as a
line chart:

124

Each line represents a different type of product that is sold at the Flower & Gift
shop. The height of each line shows the number of different people who bought
the product during that hour. In general, it looks like the most popular items at the
online shop were flowers. Most of the purchases were made early in the day,
around lunch time, and early in the evening.

 Example 5

This example uses recent (September 29-October 6, 2010) earthquake data downloaded from
the USGS Earthquakes website. The data is a comma separated ASCII text file that contains
the source network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number
of reporting stations (NST) for each earthquake over the last 7 days.

Download the text file, M 1+ earthquakes, past 7 days, and upload it to
Splunk. Splunk should extract the fields automatically.
Create a chart that shows the number of earthquakes and the magnitude of each
one that occurred in and around California.

source=eqs7day-M1.csv Region=*California | chart count over Magnitude

by Region useother=f

This search counts the number of earthquakes that occurred in the the California
regions. The count is then broken down for each region based on the magnitude
of the quake. Because the Region value is non-numeric, the search uses the
useother=f argument to exclude events that don't match.

This produces the following table:

125

Click Show report to format the chart in Report Builder. Here, it's formatted as a
scatter chart:

This chart shows that the majority of the quakes that occurred in the past week
were of magnitudes between 1 and 2.2. Quakes of higher magnitude were less
frequent--Yay!

Also, the plot points for each region may overlap with another region's plot. If you
want to see just the points for one region at a time, mouseover the region in the
legend. If you want to see metrics for an individual point, mouseover that point on
the chart. A tooltip will open and display the corresponding Magnitude, Region,
and count of earthquakes.

 More examples

Example 1: Return max(delay) for each value of foo.

... | chart max(delay) over foo

Example 2: Return max(delay) for each value of foo split by the value of bar.

126

... | chart max(delay) over foo by bar

Example 3: Return the ratio of the average (mean) "size" to the maximum
"delay" for each distinct "host" and "user" pair.

... | chart eval(avg(size)/max(delay)) AS ratio by host user

Example 4: Return the the maximum "delay" by "size", where "size" is broken
down into a maximum of 10 equal sized buckets.

... | chart max(delay) by size bins=10

Example 5: Return the average (mean) "size" for each distinct "host".

... | chart avg(size) by host

 See also

timechart, bucket, sichart

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the chart command.

 cluster

You can use the cluster command to learn more about your data and to find
common and/or rare events in your data. For example, if you are investigating an
IT problem and you don't know specifically what to look for, use the cluster
command to find anomalies. In this case, anomalous events are those that aren't
grouped into big clusters or clusters that contain few events. Or, if you are
searching for errors, use the cluster command to see approximately how many
different types of errors there are and what types of errors are common in your
data.

 Synopsis

Cluster similar events together.

 Syntax

cluster [slc-option]*

127

 Optional arguments

slc-option
Syntax: t=<num> | delims=<string> | showcount=<bool> |
countfield=<field> | labelfield=<field> | field=<field> | labelonly=<bool> |
match=(termlist | termset | ngramset)
Description: Options for configuring simple log clusters (slc).

 SLC options

t
Syntax: t=<num>
Description: Sets the cluster threshold, which controls the sensitivity of
the clustering. This value needs to be a number greater than 0.0 and less
than 1.0. The closer the threshold is to 1, the more similar events have to
be for them to be considered in the same cluster. Default is 0.8.

delims
Syntax: delims=<string>
Description: Configures the set of delimiters used to tokenize the raw
string. By default, everything except 0-9, A-Z, a-z, and '_' are delimiters.

showcount
Syntax: showcount=<bool>
Description: Shows the size of each cluster. Default is true, unless
labelonly is set to true. When showcount=false, each indexer clusters its
own events before clustering on the search head.

countfield
Syntax: countfield=<field>
Description: Name of the field to write the cluster size to. The cluster size
is the count of events in the cluster. Defaults to cluster_count.

labelfield
Syntax: labelfield=<field>
Description: Name of the field to write the cluster number to. Splunk
counts each cluster and labels each with a number as it groups events
into clusters. Defaults to cluster_label.

field
Syntax: field=<field>
Description: Name of the field to analyze in each event. Defaults to _raw.

128

labelonly
Description: labelonly=<bool>
Syntax: Specifies whether reduce each cluster to a single representative
cluster. If true, keeps all original events and labels them with a cluster
number (the value of labelfield). If false, reduces each cluster to a single
event. to keep all original events instead of reducing each cluster to a
single event. Defaults to false.

match
Syntax: match=(termlist | termset | ngramset)
Description: Specify the method used to determine the similarity between
events. termlist breaks down the field into words and requires the exact
same ordering of terms. termset allows for an unordered set of terms.
ngramset compares sets of trigram (3-character substrings). ngramset is
significantly slower on large field values and is most useful for short
non-textual fields, like punct. Defaults to termlist.

 Description

The cluster command groups events together based on how similar they are to
each other. Unless you specify a different field, cluster uses the _raw field to
break down the events into terms (match=termlist) and compute the vector
between events. Set a higher threshold value for t, if you want the command to
be more discriminating about which events are grouped together.

The result of the cluster command appends two new fields to each event. You
can specify what to name these fields with the countfield and labelfield
parameters, which default to cluster_count and cluster_label. The
cluster_count value is the number of events that are part of the cluster, or the
cluster size. Each event in the cluster is assigned the cluster_label value of the
cluster it belongs to. For example, if the search returns 10 clusters, then the
clusters are labeled from 1 to 10.

 Examples

 Example 1

Search for events that don't cluster into large groups.

... | cluster showcount=t | sort cluster_count

This returns clusters of events and uses the sort command to display them in
ascending order based on the cluster size, which are the values of
cluster_count. Because they don't cluster into large groups, you can consider

129

these rare or uncommon events.

 Example 2

Cluster similar error events together and search for the most frequent type of
error.

error | cluster t=0.9 showcount=t | sort - cluster_count | head 20

This searches your index for events that include the term "error" and clusters
them together if they are similar. The sort command is used to display the events
in descending order based on the cluster size, cluster_count, so that largest
clusters are shown first. The head command is then used to show the twenty
largest clusters. Now that you've found the most common types of errors in your
data, you can dig deeper to find the root causes of these errors.

 Example 3

Use the cluster command to see an overview of your data. If you have a large
volume of data, run the following search over a small time range, such as 15
minutes or 1 hour, or restrict it to a source type or index.

... | cluster labelonly=t showcount=t | sort - cluster_count,

cluster_label, _time | dedup 5 cluster_label

This search helps you to learn more about your data by grouping events together
based on their similarity and showing you a few of events from each cluster. It
uses labelonly=t to keep each event in the cluster and append them with a
cluster_label. The sort command is used to show the results in descending
order by its size (cluster_count), then its cluster_label, then the indexed
timestamp of the event (_time). The dedup command is then used to show the
first five events in each cluster, using the cluster_label to differentiate between
each cluster.

 See also

anomalies, anomalousvalue, cluster, kmeans, outlier

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the cluster command.

130

 collect

 Synopsis

Puts search results into a summary index.

 Syntax

collect index [arg-options]*

 Required arguments

index
Syntax: index=<string>
Description: Name of the index where Splunk should add the events. The
index must exist for events to be added to it, the index is NOT created
automatically.

 Optional arguments

arg-options
Syntax: addtime=<bool> | file=<string> | spool=<bool> | marker=<string> |
testmode=<bool> | run-in-preview=<bool>
Description: Optional arguments for the collect command.

 Collect options

addtime
Syntax: addtime=<bool>
Description: If the search results you want to collect do not have a _raw
field (such as results of stats, chart, timechart), specify whether to prefix a
time field into each event. Specifying false means that Splunk will use its
generic date detection against fields in whatever order they happen to be
in the summary rows. Specifying true means that Splunk will use the
search time range info_min_time (which is added by sistats) or _time.
Splunk adds the time field based on the first field that it finds:
info_min_time, _time, now(). Default is true.

file
Syntax: file=<string>
Description: Name of the file where to write the events. Optional, default
"<random-num>_events.stash". The following placeholders can be used in

131

the file name $timestamp$, $random$ and will be replaced with a
timestamp and a random number, respectively.
".stash" needs to be added at the end of the file name when used
with "index=", if not the data will be added to the main index.

marker
Syntax: marker=<string>
Description: A string, usually of key-value pairs, to append to each event
written out. Optional, default is empty.

run-in-preview
Syntax: run-in-preview=<bool>
Description: Controls whether the collect command is enabled during
preview generation. Generally, you do not want to insert preview results
into the summary index, run-in-preview=false. In some cases, such as
when a custom search command is used as part of the search, you might
want to turn this on to ensure correct summary indexable previews are
generated. Defaults to false.

spool
Syntax: spool=<bool>
Description: If set to true (default is true), the summary indexing file will
be written to Splunk's spool directory, where it will be indexed
automatically. If set to false, file will be written to
$SPLUNK_HOME/var/run/splunk.

testmode
Syntax: testmode=<bool>
Description: Toggle between testing and real mode. In testing mode the
results are not written into the new index but the search results are
modified to appear as they would if sent to the index. (defaults to false)

 Description

Adds the results of the search into the specified index. Behind the scenes, the
events are written to a file whose name format is:
events_random-num.stash, unless overwritten, in a directory which is
watched for new events by splunk. If the events contain a _raw field, then the raw
field is saved; if the events don't have a _raw field, one is constructed by
concatenating all the fields into a comma separated key=value pairs list.

Note: The collect command also works with all-time real-time searches.

132

 Examples

Example 1: Put "download" events into an index named "downloadcount".

eventtypetag="download" | collect index=downloadcount

 See also

overlap, sichart, sirare, sistats, sitop, sitimechart, tscollect

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the collect command.

 concurrency

 Synopsis

Given a duration field, finds the number of "concurrent" events for each event.

 Syntax

concurrency duration=<field> [start=<field>] [output=<field>]

 Required arguments

duration
Syntax: duration=<field>
Description: A field that represents a span of time.

 Optional arguments

start
Syntax: start=<field>
Description: A field that represents the start time. Default is _time.

output
Syntax: output=<field>
Description: A field to write the resulting number of concurrent events.
Default is "concurrency".

133

 Description

Concurrency is the number of events that occurred simultaneously at the start
time of the event, not the number of events that occurred during any overlap.

An event X is concurrent with event Y if (X.start, X.start + X.duration) overlaps at
all with: (Y.start, Y.start + Y.duration)

 Examples

 Example 1

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, All time.
Use the duration or span of a transaction to count the number of other
transactions that occurred at the same time.

sourcetype="access_*" | transaction JSESSIONID clientip
startswith="*signon*" endswith="purchase" | concurrency

duration=duration | eval duration=tostring(duration,"duration")

This example groups events into transactions if they have the same values of
JSESSIONID and clientip, defines an event as the beginning of the transaction if
it contains the string "signon" and the last event of the transaction if it contains
the string "purchase".

The transactions are then piped into the concurrency command, which counts
the number of events that occurred at the same time based on the timestamp
and duration of the transaction.

The search also uses the eval command and the tostring() function to reformat
the values of the duration field to a more readable format, HH:MM:SS.

134

These results show that the first transaction started at 4:18 AM, lasted 1 hour 7
minutes and 17 seconds, and has a concurrency of 1. The concurrency number
is inclusive, so this means that this was the only transaction taking place at 4:18
AM.

The second transaction started at 4:52:18 AM. At this time, the first transaction
was still taking place, so the concurrency for this transaction is 2.

 Example 2

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Use the time between each purchase to count the number of different purchases
that occurred at the same time.

sourcetype=access_* action=purchase | delta _time AS timeDelta p=1 |

eval timeDelta=abs(timeDelta) | concurrency duration=timeDelta

This example uses the delta command and the _time field to calculate the time
between one purchase event (action=purchase) and the purchase event
immediately preceding it. The search renames this change in time as timeDelta.

Some of the values of timeDelta are negative. Because the concurrency
command does not work with negative values, the eval command is used to
redefine timeDelta as its absolute value (abs(timeDelta)). This timeDelta is
then used as the duration for calculating concurrent events.

These results show that the first and second purchases occurred at the same
time. However, the first purchase has a concurrency=1. The second purchase
has a concurrency=2, which includes itself and the first purchase event. Notice
that the third purchase has a concurrency=1. This is because by the time of that

135

purchase, 12:49 AM, the first purchase (which had timeDelta=49 seconds)
already completed.

 Example 3

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Use the time between each consecutive transaction to calculate the number of
transactions that occurred at the same time.

sourcetype=access_* | transaction JSESSIONID clientip
startswith="*signon*" endswith="purchase" | delta _time AS timeDelta
p=1 | eval timeDelta=abs(timeDelta) | concurrency duration=timeDelta |

eval timeDelta=tostring(timeDelta,"duration")

This example groups events into transactions if they have the same values of
JSESSIONID and clientip, defines an event as the beginning of the transaction if
it contains the string "signon" and the last event of the transaction if it contains
the string "purchase".

The transactions are then piped into the delta command, which uses the _time
field to calculate the time between one transaction and the transaction
immediately preceding it. The search renames this change in time as timeDelta.

Some of the values of timeDelta are negative. Because the concurrency
command does not work with negative values, the eval command is used to
redefine timeDelta as its absolute value (abs(timeDelta)). This timeDelta is
then used as the duration for calculating concurrent transactions.

Unlike Example 1, which was run over All time, this search was run over the
time range Other > Yesterday. There were no concurrent transactions for these
first two transactions.

136

 Example 4

This example uses recent (October 18-25, 2010) earthquake data downloaded from the USGS
Earthquakes website. The data is a comma separated ASCII text file that contains the source
network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of reporting
stations (NST) for each earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below.
Search for recent earthquakes in and around California that occurred at the same
time.

source="eqs7day-M1.csv" Region="*California" | delta _time AS timeDelta
p=1 | eval timeDelta=abs(timeDelta) | concurrency duration=timeDelta |

where concurrency>1

This example starts off with a search for all the earthquakes in the California area
(Region="*California"). Then it calculates the time between each earthquake
and the one before using the delta command. The absolute value of this change
in time, timeDelta, is then used as the duration value to find concurrent
earthquakes.

The events are piped into the where command to filter out events that don't have
a concurrent event (concurrency>1).

Here, this result shows you that there were two earthquakes (concurrency=2) that
occurred on Tuesday, October 19, 2010 at 11:23:51 UTC (this is the Dateime
value). But, this only shows 1 event.

What if you want to see more information about these events? For example, what
was the magnitude of these two quakes and where did they occur? You have the
Datetime value and can search for that over the time range, All time. Or you can
use a subsearch:

source="eqs7day-M1.csv" [search source="eqs7day-M1.csv"
Region="*California" | delta _time AS timeDelta p=1 | eval
timeDelta=abs(timeDelta) | concurrency duration=timeDelta | where

137

concurrency>1 | table Datetime]

The original search is run first as a subsearch that uses the table command to
return only the Datetime of the results. This Datetime is used in the outer search
and returns the following events:

Now, you can see that the two concurrent events occurred in Northern California,
fairly close together, and with magnitudes of 1.1 and 1.2 respectively.

 More examples

Example 1: Calculate the number of concurrent events for each event and emit
as field 'foo':

... | concurrency duration=total_time output=foo

Example 2: Calculate the number of concurrent events using the 'et' field as the
start time and 'length' as the duration:

... | concurrency duration=length start=et

 See also

timechart

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the concurrency command.

 contingency

In statistics, contingency tables are used to record and analyze the relationship
between two or more (usually categorical) variables. Many metrics of association
or independence, such as the phi coefficient or the Cramer's V, can be calculated
based on contingency tables.

138

You can use the contingency command to build a contingency table, which in
this case is a co-occurrence matrix for the values of two fields in your data. Each
cell in the matrix displays the count of events in which both of the cross-tabulated
field values exist. This means that the first row and column of this table is made
up of values of the two fields. Each cell in the table contains a number that
represents the count of events that contain the two values of the field in that row
and column combination.

If a relationship or pattern exists between the two fields, you can spot it easily
just by analyzing the information in the table. For example, if the column values
vary significantly between rows (or vice versa), there is a contingency between
the two fields (they are not independent). If there is no contingency, then the two
fields are independent.

 Synopsis

Builds a contingency table for two fields.

 Syntax

contingency [<contingency-option>]* <field> <field>

 Required arguments

<field>
Syntax: <field>
Description: Any field, non wildcarded.

 Optional arguments

contingency-option
Syntax: <maxopts> | <mincover> | <usetotal> | <totalstr>
Description: Options for the contingency table.

 Contingency option

maxopts
Syntax: maxrows=<int> | maxcols=<int>
Description: Specify the maximum number of rows or columns to display.
If the number of distinct values of the field exceeds this maximum, the
least common values will be ignored. A value of 0 means unlimited rows
or columns. By default, maxrows=0 and maxcols=0.

139

mincover
Syntax: mincolcover=<num> | minrowcover=<num>
Description: Specify the minimum percentage of values for the row or
column field. If the number of entries needed to cover the required
percentage of values exceeds maxrows or maxcols, maxrows or maxcols
takes precedence. By default, mincolcover=1.0 and minrowcover=1.0.

usetotal
Syntax: usetotal=<bool>
Description: Specify whether or not to add row and column totals. Default
is usetotal=true.

totalstr
Syntax: totalstr=<field>
Description: Field name for the totals row and column. Default is
totalstr=TOTAL.

 Description

This command builds a contingency table for two fields. If you have fields with
many values, you can restrict the number of rows and columns using the maxrows
and maxcols parameters. By default, the contingency table displays the row
totals, column totals, and a grand total for the counts of events that are
represented in the table.

 Examples

 Example 1

Build a contingency table to see if there is a relationship between the values of
log_level and component.

index=_internal | contingency log_level component maxcols=5

These results show you at-a-glance what components, if any, may be causing
issues in your Splunk instance. The component field has many values (>50), so

140

this example, uses maxcols to show only five of the values.

 Example 2

Build a contingency table to see the installer download patterns from users based
on the platform they are running.

host="download"| contingency name platform

This is pretty straightforward because you don't expect users running one
platform to download an installer file for another platform. Here, the contingency
command just confirms that these particular fields are not independent. If this
chart showed otherwise, for example if a great number of Windows users
downloaded the OSX installer, you might want to take a look at your web site to
make sure the download resource is correct.

 Example 3

This example uses recent earthquake data downloaded from the USGS Earthquakes website.
The data is a comma separated ASCII text file that contains the source network (Src), ID (Eqid),
version, date, location, magnitude, depth (km) and number of reporting stations (NST) for each
earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below. (Here, the CSV file is uploaded to the
custom index recentquakes. Also, the file includes two weeks of data.)

Earthquakes occurring at a depth of less than 70 km are classified as
shallow-focus earthquakes, while those with a focal-depth between 70 and 300
km are commonly termed mid-focus earthquakes. In subduction zones,
deep-focus earthquakes may occur at much greater depths (ranging from 300
up to 700 kilometers).

141

Build a contingency table to look at the relationship between the magnitudes and
depths of recent earthquakes.

index=recentquakes | contingency Magnitude Depth | sort Magnitude

This search is very simple. But because there are quite a range of values for the
Magnitude and Depth fields, the results is a very large matrix. Before building the
table, we want to reformat the values of the field:

index=recentquakes | eval Magnitude=case(Magnitude<=1, "0.0 - 1.0",
Magnitude>1 AND Magnitude<=2, "1.1 - 2.0", Magnitude>2 AND Magnitude<=3,
"2.1 - 3.0", Magnitude>3 AND Magnitude<=4, "3.1 - 4.0", Magnitude>4 AND
Magnitude<=5, "4.1 - 5.0", Magnitude>5 AND Magnitude<=6, "5.1 - 6.0",
Magnitude>6 AND Magnitude<=7, "6.1 - 7.0", Magnitude>7,"7.0+") | eval
Depth=case(Depth<=70, "Shallow", Depth>70 AND Depth<=300, "Mid",
Depth>300 AND Depth<=700, "Deep") | contingency Magnitude Depth | sort

Magnitude

Now, the search uses the eval command with the case() function to redefine the
values of Magnitude and Depth, bucketing them into a range of values. For
example, the Depth values are redefined as "Shallow", "Mid", or "Deep". This
creates a more readable table:

There were a lot of quakes in this 2 week period. Do higher magnitude
earthquakes have a greater depth than lower magnitude earthquakes? Not really.
The table shows that the majority of the recent earthquakes in all magnitude
ranges were shallow. And, there are significantly fewer earthquakes in the
mid-to-high range. In this data set, the deep-focused quakes were all in the
mid-range of magnitudes.

 See also

associate, correlate

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the contingency command.

142

 convert

The convert command converts field values into numberical values. Alternatively,
you can use functions of the eval command such as strftime(), strptime(), or
tostring().

 Synopsis

Converts field values into numerical values.

 Syntax

convert [timeformat=string] (<convert-function> [AS <new_fieldname>])...

 Required arguments

<convert-function>
Syntax: auto() | ctime() | dur2sec() | memk() | mktime() | mstime() | none()
| num() | rmcomma() | rmunit()
Description: Functions for convert.

 Optional arguments

timeformat
Syntax: timeformat=<string>
Description: Specify the output format for the converted time field. The
timeformat option is used by ctime and mktime functions. For a list and
descriptions of format options, refer to the topic "Common time format
variables". Defaults to %m/%d/%y %H:%M:%S.

<new_fieldname>
Syntax: <string>
Description: Rename function to a new field.

 Convert functions

auto()
Syntax: auto(<wc-field>)
Description: Automatically convert the field(s) to a number using the best
conversion. Note that if not all values of a particular field can be converted
using a known conversion type, the field is left untouched and no
conversion at all in done for that field.

143

ctime()
Syntax: ctime(<wc-field>)
Description: Convert an epoch time to an ascii human readable time. Use
the timeformat option to specify exact format to convert to.

dur2sec()
Syntax: dur2sec(<wc-field>)
Description: Convert a duration format "D+HH:MM:SS" to seconds.

memk()
Syntax: memk(<wc-field>)
Description: Convert a {KB, MB, GB} denominated size quantity into a
KB.

mktime()
Syntax: mktime(<wc-field>)
Description: Convert an human readable time string to an epoch time.
Use timeformat option to specify exact format to convert from.

mstime()
Syntax: mstime(<wc-field>)
Description: Convert a MM:SS.SSS format to seconds.

none()
Syntax: none(<wc-field>)
Description: In the presence of other wildcards, indicates that the
matching fields should not be converted.

num()
Syntax: num(<wc-field>)
Description: Like auto(), except non-convertible values are removed.

rmcomma()
Syntax: rmcomma(<wc-field>)
Description: Removes all commas from value, for example
rmcomma(1,000,000.00) returns 1000000.00.

rmunit()
Syntax: rmunit(<wc-field>)
Description: Looks for numbers at the beginning of the value and
removes trailing text.

144

 Description

Converts the values of fields into numerical values. When renaming a field using
AS, the original field is left intact.

 Examples

 Example 1

This example uses sendmail email server logs and refers to the logs with
sourcetype=sendmail. The sendmail logs have two duration fields, delay and
xdelay.

The delay is the total amount of time a message took to deliver or bounce. The
delay is expressed as "D+HH:MM:SS", which indicates the time it took in hours
(HH), minutes (MM), and seconds (SS) to handle delivery or rejection of the
message. If the delay exceeds 24 hours, the time expression is prefixed with the
number of days and a plus character (D+).

The xdelay is the total amount of time the message took to be transmitted
during final delivery, and its time is expressed as "HH:MM:SS".
Change the sendmail duration format of delay and xdelay to seconds.

sourcetype=sendmail | convert dur2sec(delay) dur2sec(xdelay)

This search pipes all the sendmail events into the convert command and uses
the dur2sec() function to convert the duration times of the fields, delay and
xdelay, into seconds.

Here is how your search results will look after you use the fields sidebar to add
the fields to your events:

You can compare the converted field values to the original field values in the
events list.

145

 Example 2

This example uses syslog data.

Convert a UNIX epoch time to a more readable time formatted to show hours,
minutes, and seconds.

sourcetype=syslog | convert timeformat="%H:%M:%S" ctime(_time) AS

c_time | table _time, c_time

The ctime() function converts the _time value of syslog (sourcetype=syslog)
events to the format specified by the timeformat argument. The
timeformat="%H:%M:%S" arguments tells Splunk to format the _time value as
HH:MM:SS.

Here, the table command is used to show the original _time value and the
converted time, which is renamed c_time:

The ctime() function changes the timestamp to a non-numerical value. This is
useful for display in a report or for readability in your events list.

 Example 3

This example uses syslog data.

Convert a time in MM:SS.SSS (minutes, seconds, and subseconds) to a number
in seconds.

sourcetype=syslog | convert mstime(_time) AS ms_time | table _time,

ms_time

The mstime() function converts the _time value of syslog (sourcetype=syslog)
events from a minutes and seconds to just seconds.

Here, the table command is used to show the original _time value and the
converted time, which is renamed ms_time:

146

The mstime() function changes the timestamp to a numerical value. This is
useful if you want to use it for more calculations.

 More examples

Example 1: Convert values of the "duration" field into number value by removing
string values in the field value. For example, if "duration="212 sec"", the resulting
value will be "duration="212"".

... | convert rmunit(duration)

Example 2: Change the sendmail syslog duration format (D+HH:MM:SS) to
seconds. For example, if "delay="00:10:15"", the resulting value will be
"delay="615"".

... | convert dur2sec(delay)

Example 3: Change all memory values in the "virt" field to Kilobytes.

... | convert memk(virt)

Example 4: Convert every field value to a number value except for values in the
field "foo" (use the "none" argument to specify fields to ignore).

... | convert auto(*) none(foo)

Example 5: Example usage

... | convert dur2sec(xdelay) dur2sec(delay)

Example 6: Example usage

... | convert auto(*)

147

 See also

eval

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the convert command.

 correlate

This page is currently a work in progress; expect frequent near-term updates.

You can use the correlate command to see an overview of the co-occurrence
between fields in your data. The results are presented in a matrix format, where
the cross tabulation of two fields is a cell value that represents the percentage of
times that the two fields exist in the same events.

Note: This command looks at the relationship among all the fields in a set of
search results. If you want to analyze the relationship between the values of
fields, refer to the contingency command, which counts the co-ocurrence of pairs
of field values in events.

 Synopsis

Calculates the correlation between different fields.

 Syntax

correlate [type=cocur] [_metainclude=<bool>]

 Optional arguments

type
Syntax: type=cocur
Description: Type of correlation to calculate. Currently the only available
options is the co-occurrence matrix, which contains the percentage of
times that two fields exist in the same events. Cell values of 1.0 indicate
that the two fields always exist together in the data.

_metainclude
Syntax: _metainclude=<bool>

148

Description: This is an internal option. Specifies whether to include the
internal metadata fields (that start with '_') in the analysis. Defaults to
false.

 Examples

Example 1: Look at the co-occurrence between all fields in the _internal index.

index=_internal | correlate

Here is a snapshot of the results:

Because there are difference types of logs in the _internal, you can expect to
see that many that many of the fields do not co-occur.

Example 2: Calculate the co-occurrences between all fields in Web access
events.

sourcetype=access_* | correlate

You expect all Web access events to share the same fields: clientip, referer,
method, etc. But, because the sourcetype=access_* includes both
access_common and access_combined Apache log formats, you should see that
the percentages of some of the fields are less than 1.0.

Example 3: Calculate the co-occurrences between all the fields in download
events.

eventtype=download | correlate

The more narrow your search is before you pass the results into correlate, the
more likely all the field value pairs will have a correlation of 1.0 (co-occur in 100%
of the search results). For these download events, you might be able to spot an
issue depending on which pair have less than 1.0 co-occurrence.

149

 See also

associate, contingency

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the correlate command.

 crawl

 Synopsis

Crawls the filesystem for files of interest to Splunk.

 Syntax

crawl [files | network] [crawl-option]*

 Optional arguments

crawl-option
Syntax: <string>=<string>
Description: Override settings from crawl.conf.

 Description

Crawls for the discovery of new sources to index. Default crawl settings are
found in crawl.conf and crawl operations are logged to
$splunk_home/var/log/splunk/crawl.log. Generally to be used in conjunction
with the input command. Specify crawl options to override settings in
crawl.conf. Note: If you add crawl to a search, Splunk only returns data it
generates from crawl. Splunk doesn't return any data generated before | crawl.

 Examples

Example 1: Crawl root and home directories and add all possible inputs found
(adds configuration information to "inputs.conf").

| crawl root="/;/Users/" | input add

Example 2: Crawl bob's home directory.

150

| crawl root=/home/bob

Example 3: Add all sources found in bob's home directory to the 'preview' index.

| crawl root=/home/bob | input add index=preview

Example 4: Crawl using default settings defined in crawl.conf.

| crawl

 See also

input

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the crawl command.

 dbinspect

 Synopsis

Returns information about the Splunk index.

 Syntax

dbinspect [index=<string>] [|<timeformat>]

 Optional arguments

index
Syntax: index=<string>
Description: Specify the name of the index to inspect.

Syntax: span=<int>|<int><timescale>
Description: Specify the span length of the bucket. If using a timescale
unit (sec, min, hr, day, month, or subseconds), this is used as a time
range. If not, this is an absolute bucket "length".

<timeformat>
Syntax: timeformat=<string>

151

Description: Set the time format. Defaults to
timeformat=%m/%d/%Y:%H:%M:%S.

 Time scale units

These are options for specifying a timescale as the bucket span.

<timescale>
Syntax: <sec> | <min> | <hr> | <day> | <month> | <subseconds>
Description: Time scale units.

<sec>
Syntax: s | sec | secs | second | seconds
Description: Time scale in seconds.

<min>
Syntax: m | min | mins | minute | minutes
Description: Time scale in minutes.

<hr>
Syntax: h | hr | hrs | hour | hours
Description: Time scale in hours.

<day>
Syntax: d | day | days
Description: Time scale in days.

<month>
Syntax: mon | month | months
Description: Time scale in months.

<subseconds>
Syntax: us | ms | cs | ds
Description: Time scale in microseconds (us), milliseconds (ms),
centiseconds (cs), or deciseconds (ds).

 Description

The dbinspect command returns information about the Splunk index that you
specify.

When you invoke the dbinspect command without a bucket span, Splunk returns
the following information about the given index's buckets: earliestTime,

152

eventCount, hostCount, id, latestTime, modTime, path, rawSizeMB, sizeOnDiskMB,
sourceCount, sourceTypeCount, and state.

When you invoke the dbinspect command with a bucket span, Splunk returns a
chartable representation of the spans of each bucket.

 Examples

Example 1: Display a chart with the span size of 1 day.

| dbinspect index=_internal span=1d

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the dbinspect command.

 dedup

 Synopsis

Removes the subsequent duplicate results that match specified criteria.

 Syntax

dedup [<N>] <field-list> [keepevents=<bool>] [keepempty=<bool>]
[consecutive=<bool>] [sortby <sort-by-clause>]

 Required arguments

<field-list>
Syntax: <string> <string> ...
Description: A list of field names.

 Optional arguments

consecutive
Syntax: consecutive=<bool>
Description: Specify whether to only remove duplicate events that are
consecutive (true). Defaults to false.

keepempty

153

Syntax: keepempty=<bool>
Description: If an event contains a null value for one or more of the
specified fields, the event is either retained (true) or discarded. Defaults to
false.

keepevents
Syntax: keepevents=<bool>
Description: When true, keeps all events and removes specific values.
Defaults to false.

<N>
Syntax: <int>
Description: Specify the first N (where N > 0) number of events to keep,
for each combination of values for the specified field(s). The non-option
parameter, if it is a number, is interpreted as N.

<sort-by-clause>
Syntax: (- | +) <sort-field>
Description: List of fields to sort by and their order, descending (-) or
ascending (+).

 Sort field options

<sort-field>
Syntax: <field> | auto(<field>) | str(<field>) | ip(<field>) | num(<field>)
Description: Options for sort-field.

<field>
Syntax: <string>
Description: The name of the field to sort.

auto
Syntax: auto(<field>)
Description: Determine automatically how to sort the field's values.

ip
Syntax: ip(<field>)
Description: Interpret the field's values as an IP address.

num
Syntax: num(<field>)
Description: Treat the field's values as numbers.

154

str
Syntax: str(<field>)
Description: Order the field's values lexicographically.

 Description

The dedup command lets you specify the number of duplicate events to keep
based on the values of a field. The event returned for the dedup field will be the
first event found (most recent in time). If you specify a number, dedup interprets
this number as the count of duplicate events to keep, N. If you don't specify a
number, N is assumed to be 1 and it keeps only the first occurring event and
removes all consecutive duplicates.

The dedup command also lets you sort by some list of fields. This will remove all
the duplicates and then sort the results based on the specified sort-by field. Note,
that this will only be valid or effective if your search returns multiple results. The
other options let you specify other criteria, for example you may want to keep all
events, but for events with duplicate values, remove those values instead of the
entire event.

Note: We do not recommend that you run the dedup command against the _raw
field if you are searching over a large volume of data. Doing this causes Splunk
to add a map of each unique _raw value seen which will impact your search
performance. This is expected behavior.

 Examples

Example 1: Remove duplicates of results with the same 'host' value.

... | dedup host

Example 2: Remove duplicates of results with the same 'source' value and sort
the events by the '_time' field in ascending order.

... | dedup source sortby +_time

Example 3: Remove duplicates of results with the same 'source' value and sort
the events by the '_size' field in descending order.

... | dedup source sortby -_size

Example 4: For events that have the same 'source' value, keep the first 3 that
occur and remove all subsequent events.

... | dedup 3 source

155

Example 5: For events that have the same 'source' AND 'host' values, keep the
first 3 that occur and remove all subsequent events.

... | dedup 3 source host

 See also

uniq

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the dedup command.

 delete

 Synopsis

Performs a deletion from the index.

 Syntax

delete

 Description

Piping a search to the delete operator marks all the events returned by that
search so that future searches do not return them. No user (even with admin
permissions) will be able to see this data using Splunk. Currently, piping to
delete does not reclaim disk space.

Note: Splunk does not let you run the delete operator during a real-time search;
you cannot delete events as they come in. If you try to use delete during a
real-time search, Splunk will display an error.

The delete operator can only be accessed by a user with the
"delete_by_keyword" capability. By default, Splunk ships with a special role,
"can_delete" that has this capability (and no others). The admin role does not
have this capability by default. Splunk recommends you create a special user
that you log into when you intend to delete index data.

156

To use the delete operator, run a search that returns the events you want
deleted. Make sure that this search ONLY returns events you want to delete, and
no other events. Once you've confirmed that this is the data you want to delete,
pipe that search to delete. Read more about how to remove indexed data from
Splunk in the Managing Indexers and Clusters manual.

Note: The delete operator will trigger a roll of hot buckets to warm in the affected
index(es).

 Examples

Example 1: Delete events from the "insecure" index that contain strings that look
like Social Security numbers.

index=insecure | regex _raw = "\d{3}-\d{2}-\d{4}" | delete

Example 2: Delete events from the "imap" index that contain the word "invalid"

index=imap invalid | delete

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the delete command.

 delta

 Synopsis

Computes the difference in field value between nearby results.

 Syntax

delta (field [AS newfield]) [p=int]

 Required arguments

field
Syntax: <fieldname>
Description: The name of a field to analyze.

157

 Optional arguments

<newfield>
Syntax: <string>
Description: A rename for the field value.

p
Syntax: p=<int>
Description: If newfield if not specified, it defaults to delta(field) If p
is unspecified, the default = 1, meaning the immediate previous value is
used.

 Description

For each event where field is a number, the delta command computes the
difference, in search order, between the event's value of the field and a previous
event's value of field and writes this difference into newfield. If newfield is not
specified, it defaults to delta(field). If p is unspecified, it defaults to p=1,
meaning that the immediate previous value is used. p=2 would mean that the
value before the previous value is used, etc.

Note: The delta command works on the order of events. By default, the events
we get for non-real-time searches are in reverse time order, from new events to
old events; so, values ascending over time will show negative deltas. But, the
delta could be applied after any sequence of commands, so there is no input
order guaranteed.

 Examples

 Example 1

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Find the top ten people who bought something yesterday, count how many
purchases they made and the difference in the number of purchases between
each buyer.

sourcetype=access_* action=purchase | top clientip | delta count p=1

Here, the purchase events (action=purchase) are piped into the top command to
find the top ten users (clientip) who bought something. These results, which
include a count for each clientip are then piped into the delta command to

158

calculate the difference between the count value of one event and the count
value of the event preceding it. By default, this difference is saved in a field called
delta(count):

These results are formatted as a table because of the top command. Note that
the first event does not have a delta(count) value.

 Example 2

This example uses recent (October 18-25, 2010) earthquake data downloaded from the USGS
Earthquakes website. The data is a comma separated ASCII text file that contains the source
network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of reporting
stations (NST) for each earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below.
Calculate the difference in time between each of the recent earthquakes in
Northern California.

source="eqs7day-M1.csv" Region="Northern California" | delta _time AS
timeDeltaS p=1 | eval timeDeltaS=abs(timeDeltaS) | eval

timeDelta=tostring(timeDeltaS,"duration")

This example searches for earthquakes in Northern California (Region="Northern
California"). Then it uses the delta command to calculate the difference in the
timestamps (_time) between each earthquake and the one immediately before it.
This change in time is renamed timeDeltaS.

This example also uses the eval command and tostring() function to reformat
timeDeltaS as HH:MM:SS, so that it is more readable:

159

Here, you can see that: the difference between the first and second quake is
almost 2 hours, the difference between the second and third is almost an hour
later, etc.

 Example 3

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Calculate the difference in time between consecutive transactions.

sourcetype=access_* | transaction JSESSIONID clientip
startswith="*signon*" endswith="purchase" | delta _time AS timeDelta
p=1 | eval timeDelta=abs(timeDelta) | eval

timeDelta=tostring(timeDelta,"duration")

This example groups events into transactions if they have the same values of
JSESSIONID and clientip, defines an event as the beginning of the transaction if
it contains the string "signon" and the last event of the transaction if it contains
the string "purchase".

The transactions are then piped into the delta command, which uses the _time
field to calculate the time between one transaction and the transaction
immediately preceding it. The search renames this change in time as timeDelta.

This example also uses eval command to redefine timeDelta as its absolute
value (abs(timeDelta)) and convert it to a more readable string format with the
tostring() function.

160

You can see that: the difference between the first and second transactions is 9
minutes 19 seconds, the difference between the second and third transaction is 9
minutes 40 seconds, etc.

 More examples

Example 1: Consider logs from a TV set top box (sourcetype=tv) that you can
use to analyze broadcasting ratings, customer preferences, etc. Which channels
do subscribers watch (activity=view) most and how long do they stay on those
channels?

sourcetype=tv activity="View" | sort - _time | delta _time AS
timeDeltaS | eval timeDeltaS=abs(timeDeltaS) | stats sum(timeDeltaS) by

ChannelName

Example 2: Compute the difference between current value of count and the 3rd
previous value of count and store the result in 'delta(count)'

... | delta count p=3

Example 3: For each event where 'count' exists, compute the difference between
count and its previous value and store the result in 'countdiff'.

... | delta count AS countdiff

 See also

accum, autoregress, streamstats, trendline

161

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the delta command.

 diff

 Synopsis

Returns the difference between two search results.

 Syntax

diff [position1=int] [position2=int] [attribute=string] [diffheader=bool]
[context=bool] [maxlen=int]

 Optional arguments

position1
Datatype: <int>
Description: The position of a search result to compare to position2. By
default, position1=1 and refers to the first search result.

position2
Datatype: <int>
Description: The position of a search result, must be greater than
position1. By default, position2=2 and refers to the second search result.

attribute
Datatype: <field>
Description: The field name to be compared between the two search
results. By default, attribute=_raw.

diffheader
Datatype: <bool>
Description: Specify whether to show (diffheader=true) or hide a header
that explains the diff output. By default, diffheader=false.

context
Datatype: <bool>

162

Description: Specify whether to show (context=true) or hide context
lines around the diff output. By default, context=false.

maxlen
Datatype: <int>
Description: Controls the maximum content in bytes diffed from the two
events. By default, maxlen=100000, meaning 100KB; if maxlen=0, there is
no limit.

 Description

Compares two search results and returning the difference of the two. Which two
search results are compared is specified by the two position values, which
default to 1 and 2 (to compare the first two results). By default, the raw text (_raw
attribute) of the two search results are compared, but other attributes can be
specified with attribute. If diffheader is true, the traditional diff headers are
created based on the source keys of the two events, it defaults to false. If
context is true, context lines around the diff are shown; it defaults to false. If
maxlen is provided, it controls the maximum content in bytes diffed from the two
events. It defaults to 100000. If maxlen=0, there is no limit.

 Examples

Example 1: Compare the "ip" values of the first and third search results.

... | diff pos1=1 pos2=3 attribute=ip

Example 2: Compare the 9th search results to the 10th.

... | diff position1=9 position2=10

 See also

set

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the diff command.

163

 erex

 Synopsis

Automatically extracts field values similar to the example values.

 Syntax

erex [<field>] examples=<erex-examples> [counterexamples=<erex-examples>]
[fromfield=<field>] [maxtrainers=<int>]

 Required arguments

examples
Syntax: <erex-examples>
Description: A comma-separated list of example values for the
information to be extracted and saved into a new field.

 Optional arguments

counterexamples
Syntax: counterexamples=<erex-examples>
Description: A comma-separated list of example values that represent
information not to be extracted.

field
Syntax: <string>
Description: A name for a new field that will take the values extracted
from fromfield. If field is not specified, values are not extracted, but the
resulting regular expression is generated and returned in an error
message. That expression can then be used with the rex command for
more efficient extraction.

fromfield
Syntax: fromfield=<field>
Description: The name of the existing field to extract the information from
and save into a new field. Defaults to _raw.

maxtrainers
Syntax: maxtrainers=<int>
Description: The maximum number values to learn from. Must be
between 1 and 1000. Defaults to 100.

164

 Erex examples

<erex-examples>
Syntax: ""<string>(, <string>)*""
Description: A comma-separated list of example values.

 Description

Example-based regular expression extraction. Automatically extracts field values
from fromfield (defaults to _raw) that are similar to the examples
(comma-separated list of example values) and puts them in field. If field is
not specified, values are not extracted, but the resulting regular expression is
generated and returned in an error message. That expression can then be used
with the rex command for more efficient extraction. To learn the extraction rule
for pulling out example values, it learns from at most maxtrainers (defaults to
100, must be between 1-1000).

 Examples

Example 1: Extracts out values like "7/01" and "7/02", but not patterns like
"99/2", putting extractions into the "monthday" attribute.

... | erex monthday examples="7/01, 07/02" counterexamples="99/2"

Example 2: Extracts out values like "7/01", putting them into the "monthday"
attribute.

... | erex monthday examples="7/01"

 See also

extract, kvform, multikv, regex, rex, xmlkv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the erex command.

 eval

165

 Synopsis

Calculates an expression and puts the resulting value into a field.

 Syntax

eval eval-field=eval-expression

 Required arguments

eval-field
Syntax: <string>
Description: A field name for your evaluated value.

eval-expression
Syntax: <string>
Description: A combination of values, variables, operators, and functions
that represent the value of your destination field. The syntax of the
expression is checked before running the search, and an exception will be
thrown for an invalid expression. For example, the result of an eval
statement is not allowed to be boolean. If Splunk cannot evaluate the
expression successfully at search-time for a given event, eval erases the
value in the result field.

 Operators

The following table lists the basic operations you can perform with eval. For
these evaluations to work, your values need to be valid for the type of operation.
For example, with the exception of addition, arithmetic operations may not
produce valid results if the values are not numerical. When concatenating values,
Splunk reads the values as strings (regardless of their value).

Type Operators
Arithmetic + - * / %

Concatenation .

Boolean AND OR NOT XOR < > <= >= != = == LIKE

 Functions

The eval command includes the following functions: abs(), case(), ceil() ,
ceiling(), cidrmatch(), coalesce(), commands(), exact(), exp(), floor(),
if(), ifnull(), isbool(), isint(), isnotnull(), isnull(), isnum(),
isstr(), len(), like(), ln(), log(), lower(), ltrim(), match(), max(),

166

md5(), min(), mvappend(), mvcount(), mvindex(), mvfilter(), mvjoin(),
mvrange(), mvzip(), now(), null(), nullif(), pi(), pow(), random(),
relative_time(), replace(), round(), rtrim(), searchmatch(), sigfig(),
spath(), split(), sqrt(), strftime(), strptime(), substr(), time(),
tonumber(), tostring(), trim(), typeof(), upper(), urldecode(),

validate().

For descriptions and examples of each function, see "Functions for eval and
where".

 Description

Performs an evaluation of arbitrary expressions that can include mathematical,
string, and boolean operations. The eval command requires that you specify a
field name that takes the results of the expression you want to evaluate. If this
destination field matches a field name that already exists, the values of the field
are replaced by the results of the eval expression.

If you are using a search as an argument to the eval command and functions,
you cannot use a saved search name; you have to pass a literal search string or
a field that contains a literal search string (like the 'search' field extracted from
index=_audit events).

You can use eval statements to define calculated fields. To do this, you set up
the eval statement in props.conf. When you run a search, Splunk automatically
evaluates the statements behind the scenes to create fields in a manner similar
to that of search time field extraction. When you do this you no longer need to
define the eval statement in a search string--you can just search on the resulting
calculated field directly.

For more information see the Calculated fields section, below.

 Examples

 Example 1

This example shows how you might coalesce a field from two different source
types and use that to create a transaction of events. sourcetype=A has a field
called number, and sourcetype=B has the same information in a field called
subscriberNumber.

sourcetype=A OR sourcetype=B | eval

phone=coalesce(number,subscriberNumber) | transaction phone maxspan=2m

167

The eval command is used to add a common field, called phone, to each of the
events whether they are from sourcetype=A or sourcetype=B. The value of phone
is defined, using the coalesce() function, as the values of number and
subscriberNumber. The coalesce() function takes the value of the first non-NULL
field (that means, it exists in the event).

Now, you're able to group events from either source type A or B if they share the
same phone value.

 Example 2

This example uses recent (September 23-29, 2010) earthquake data downloaded from the
USGS Earthquakes website. The data is a comma separated ASCII text file that contains the
source network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of
reporting stations (NST) for each earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below.

Earthquakes occurring at a depth of less than 70 km are classified as
shallow-focus earthquakes, while those with a focal-depth between 70 and 300
km are commonly termed mid-focus earthquakes. In subduction zones,
deep-focus earthquakes may occur at much greater depths (ranging from 300
up to 700 kilometers).
Classify recent earthquakes based on their depth.

source=eqs7day-M1.csv | eval Description=case(Depth<=70, "Shallow",
Depth>70 AND Depth<=300, "Mid", Depth>300, "Deep") | table Datetime,

Region, Depth, Description

The eval command is used to create a field called Description, which takes the
value of "Shallow", "Mid", or "Deep" based on the Depth of the earthquake. The
case() function is used to specify which ranges of the depth fits each description.
For example, if the depth is less than 70 km, the earthquake is characterized as
a shallow-focus quake; and the resulting Description is Shallow.

The search also pipes the results of eval into the table command. This formats a
table to display the timestamp of the earthquake, the region in which it occurred,
the depth in kilometers of the quake, and the corresponding description assigned
by the eval expression:

168

 Example 3

This example is designed to use the sample dataset from "Get the sample data into
Splunk" topic of the Splunk Tutorial, but it should work with any format of
Apache Web access log. Download the data set and follow the instructions in
that topic to upload it to Splunk. Then, run this search using the time range
Other > Yesterday.
In this search, you're finding IP addresses and classifying the network they
belong to.

sourcetype=access_* | eval network=if(cidrmatch("192.0.0.0/16",

clientip), "local", "other")

This example uses the cidrmatch() function to compare the IP addresses in the
clientip field to a subnet range. The search also uses the if() function, which
says that if the value of clientip falls in the subnet range, then network is given
the value local. Otherwise, network=other.

The eval command does not do any special formatting to your results -- it just
creates a new field which takes the value based on the eval expression. After
you run this search, use the fields sidebar to add the network field to your
results. Now you can see, inline with your search results, which IP addresses are
part of your local network and which are not. Your events list should look
something like this:

169

Another option for formatting your results is to pipe the results of eval to the
table command to display only the fields of interest to you. (See Example 1)

Note: This example just illustrates how to use the cidrmatch function. If you want
to classify your events and quickly search for those events, the better approach
is to use event types. Read more about event types in the Knowledge manager
manual.

 Example 4

This example uses generated email data (sourcetype=cisco_esa). You should be able
to run this example on any email data by replacing the sourcetype=cisco_esa
with your data's sourcetype value and the mailfrom field with your data's email
address field name (for example, it might be To, From, or Cc).
Use the email address field to extract the user's name and domain.

sourcetype="cisco_esa" mailfrom=* | eval
accountname=split(mailfrom,"@") | eval from_user=mvindex(accountname,0)
| eval from_domain=mvindex(accountname,-1) | table mailfrom, from_user,

from_domain

This example uses the split() function to break the mailfrom field into a
multivalue field called accountname. The first value of accountname is everything
before the "@" symbol, and the second value is everything after.

The example then uses mvindex() function to set from_user and from_domain to
the first and second values of accountname, respectively.

The results of the eval expressions are then piped into the table command. You
can see the the original mailfrom values and the new from_user and
from_domain values in the following results table:

170

Note: This example is really not that practical. It was written to demonstrate how
to use an eval function to identify the individual values of a multivalue fields.
Because this particular set of email data did not have any multivalue fields, the
example creates one (accountname) from a single value field (mailfrom).

 Example 5

This example uses generated email data (sourcetype=cisco_esa). You should be able
to run this example on any email data by replacing the sourcetype=cisco_esa
with your data's sourcetype value and the mailfrom field with your data's email
address field name (for example, it might be To, From, or Cc).
This example classifies where an email came from based on the email address's
domain: .com, .net, and .org addresses are considered local, while anything else
is considered abroad. (Of course, domains that are not .com/.net/.org or not
necessarily from abroad.)

sourcetype="cisco_esa" mailfrom=*| eval accountname=split(mailfrom,"@")
| eval from_domain=mvindex(accountname,-1) | eval
location=if(match(from_domain, "[^\n\r\s]+\.(com|net|org)"), "local",

"abroad") | stats count by location

The first half of this search is similar to Example 3. The split() function is used
to break up the email address in the mailfrom field. The mvindex function defines
the from_domain as the portion of the mailfrom field after the @ symbol.

Then, the if() and match() functions are used: if the from_domain value ends
with a .com, .net., or .org, the location field is assigned local. If
from_domain does not match, location is assigned abroad.

The eval results are then piped into the stats command to count the number of
results for each location value and produce the following results table:

171

After you run the search, you can add the mailfrom and location fields to your
events to see the classification inline with your events. If your search results
contain these fields, they will look something like this:

Note: This example merely illustrates using the match() function. If you want to
classify your events and quickly search for those events, the better approach is
to use event types. Read more about event types in the Knowledge manager
manual.

 Example 6

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from this topic in the tutorial and
follow the instructions to upload it to Splunk. Then, run this search using the
time range, Other > Yesterday.
Reformat a numeric field measuring time in seconds into a more readable string
format.

sourcetype=access_* | transaction clientip maxspan=10m | eval

durationstr=tostring(duration,"duration")

This example uses the tostring() function and the duration option to convert the
duration of the transaction into a more readable string formatted as HH:MM:SS.
The duration is the time between the first and last events in the transaction and
is given in seconds.

The search defines a new field, durationstr, for the reformatted duration value.

172

After you run the search, you can use the Field picker to show the two fields
inline with your events. If your search results contain these fields, they will look
something like this:

 More examples

Example A: Set velocity to distance / time.

... | eval velocity=distance/time

Example B: Set status to OK if error is 200; otherwise, Error.

... | eval status = if(error == 200, "OK", "Error")

Example C: Set lowuser to the lowercase version of username.

... | eval lowuser = lower(username)

Example D: Set sum_of_areas to be the sum of the areas of two circles

... | eval sum_of_areas = pi() * pow(radius_a, 2) + pi() * pow(radius_b,

2)

Example E: Set status to some simple http error codes.

... | eval error_msg = case(error == 404, "Not found", error == 500,

"Internal Server Error", error == 200, "OK")

Example F: Set full_name to the concatenation of first_name, a space, and
last_name.

... | eval full_name = first_name." ".last_nameSearch

Example G: Display timechart of the avg of cpu_seconds by processor rounded
to 2 decimal places.

... | timechart eval(round(avg(cpu_seconds),2)) by processor

Example H: Convert a numeric field value to a string with commas and 2 decimal
places. If the original value of x is 1000000, this returns x as 1,000,000.

... | eval x=tostring(x,"commas")

173

 Calculated fields

You can use calculated fields to move your commonly used eval statements out
of your search string and into props.conf, where they will be processed behind
the scenes at search time. With calculated fields, you can change the search
from Example 4, above, to:

sourcetype="cisco_esa" mailfrom=* | table mailfrom, from_user,

from_domain

In this example, the three eval statements that were in the search--that defined
the accountname, from_user, and from_domain fields--are now computed behind
the scenes when the search is run for any event that contains the extracted field
mailfrom field. You can also search on those fields independently once they're
set up as calculated fields in props.conf. You could search on
from_domain=email.com, for example.

For more information about setting calculated fields up in props.conf, see
"Define calculated fields" in the Knowledge Manager Manual.

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the eval command.

 eventcount

 Synopsis

Returns the number of events in an index.

 Syntax

eventcount [index=<string>] [summarize=<bool>]

 Optional arguments

index
Syntax: index=<string>
Description: The name of the index to count events, instead of the default
index.

174

summarize
Syntax: summarize=<bool>
Description: Specifies whether or not to summarize eventcounts.

 Examples

Example 1: Gives event count by each index/server pair.

| eventcount summarize=false index=*

Example 2: Displays event count over all search peers.

| eventcount summarize=true

Example 3: Return the number of events in the '_internal' index.

| eventcount index=_internal

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the eventcount command.

 eventstats

 Synopsis

Adds summary statistics to all search results.

 Syntax

eventstats [allnum=<bool>] <stats-agg-term>* [<by clause>]

 Required arguments

<stats-agg-term>
Syntax: <stats-func>(<evaled-field> | <wc-field>) [AS <wc-field>]
Description: A statistical specifier optionally renamed to a new field
name. The specifier can be by an aggregation function applied to a field or
set of fields or an aggregation function applied to an arbitrary eval
expression.

175

 Optional arguments

allnum
Syntax: allnum=<bool>
Description: If true, computes numerical statistics on each field if and
only if all of the values of that field are numerical. (default is false.)

<by clause>
Syntax: by <field-list>
Description: The name of one or more fields to group by.

 Stats functions options

stats-function
Syntax: avg() | c() | count() | dc() | distinct_count() | first() | last() | list() |
max() | median() | min() | mode() | p<in>() | perc<int>() | per_day() |
per_hour() | per_minute() | per_second() | range() | stdev() | stdevp() |
sum() | sumsq() | values() | var() | varp()
Description: Functions used with the stats command. Each time you
invoke the stats command, you can use more than one function;
however, you can only use one by clause. For a list of stats functions with
descriptions and examples, see "Functions for stats, chart, and timechart".

 Description

Generate summary statistics of all existing fields in your search results and save
them as values in new fields. Specify a new field name for the statistics results by
using the as argument. If you don't specify a new field name, the default field
name is the statistical operator and the field it operated on (for example:
stat-operator(field)). Just like the stats command except that aggregation
results are added inline to each event and only the aggregations that are
pertinent to that event. The allnum option has the same meaning as that option
in the stats command.

 Examples

Example 1: Compute the overall average duration and add 'avgdur' as a new
field to each event where the 'duration' field exists

... | eventstats avg(duration) as avgdur

Example 2: Same as Example 1 except that averages are calculated for each
distinct value of date_hour and then each event gets the average for its particular
value of date_hour.

176

... | eventstats avg(duration) as avgdur by date_hour

Example 3: This searches for spikes in error volume. You can use this search to
trigger an alert if the count of errors is higher than average, for example.

eventtype="error" | eventstats avg(foo) as avg | where foo>avg

 See also

stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the eventstats command.

 extract (kv)

 Synopsis

Extracts field-value pairs from search results.

 Syntax

extract | kv <extract-opt>* <extractor-name>*

 Required arguments

<extract-opt>
Syntax: auto=<bool> | clean_keys=<bool> | kvdelim=<string> | limit=<int>
| maxchars=<int> | mv_add=<bool> | pairdelim=<string> | reload=<bool> |
segment=<bool>
Description: Options for defining the extraction.

<extractor-name>
Syntax: <string>
Description: A stanza that can be found in transforms.conf. This is used
when props.conf did not explicitly cause an extraction for this source,
sourcetype, or host.

177

 Extract options

auto
Syntax: auto=<bool>
Description: Specifies whether to perform automatic "=" based extraction.
Defaults to true.

clean_keys
Syntax: clean_keys=<bool>
Description: Specifies whether to clean keys. Overrides CLEAN_KEYS
from transforms.conf.

kvdelim
Syntax: kvdelim=<string>
Description: Specify a list of character delimiters that separate the key
from the value.

limit
Syntax: limit=<int>
Description: Specifies how many automatic key/value pairs to extract.
Defaults to 50.

maxchars
Syntax: maxchars=<int>
Description: Specifies how many characters to look into the event.
Defaults to 10240.

mv_add
Syntax: mv_add=<bool>
Description: Specifies whether to create multivalued fields. Overrides
MV_ADD from transforms.conf.

pairdelim
Syntax: pair=<string>
Description: Specify a list of character delimiters that separate the
key-value pairs from each other.

reload
Syntax: reload=<bool>
Description: Specifies whether to force reloading of props.conf and
transforms.conf. Defaults to false.

segment

178

Syntax: segment=<bool>
Description: Specifies whether to note the locations of key/value pairs
with the results. Defaults to false.

 Description

Forces field-value extraction on the result set.

 Examples

Example 1: Extract field/value pairs that are delimited by "|;", and values of fields
that are delimited by "=:". Note that the delimiters are individual characters. So in
this example the "=" or ":" will be used to delimit the key value. Similarly, a "|" or
";" will be used to delimit against the pair itself.

... | extract pairdelim="|;", kvdelim="=:", auto=f

Example 2: Extract field/value pairs and reload field extraction settings from disk.

... | extract reload=true

Example 3: Extract field/value pairs that are defined in the transforms.conf
stanza 'access-extractions'.

... | extract access-extractions

 See also

kvform, multikv, rex, xmlkv,

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the extract command.

 fieldformat

The fieldformat command enables you to use eval expressions to change the
format of a field value when the results render.

Note: This does not apply when exporting data (to a csv file, for example)
because export retains the original data format rather than the rendered format.
There is no option to the Splunk Web export interface to render fields.

179

 Synopsis

Expresses how to render a field at output time without changing the underlying
value.

 Syntax

fieldformat <field>=<eval-expression>

 Required arguments

<field>
Description: The name of a new or existing field, non-wildcarded, for the
output of the eval expression.

<eval-expression>
Syntax: <string>
Description: A combination of values, variables, operators, and functions
that represent the value of your destination field. For more information,
see the eval command reference and the list of eval functions.

 Examples

Example 1: Specify that the start_time should be rendered by taking the value of
start_time (assuming it is an epoch number) and rendering it to display just the
hours minutes and seconds corresponding that epoch time.

... | fieldformat start_time = strftime(start_time, "%H:%M:%S")

 See also

eval, where

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the fieldformat command.

 fields

180

 Synopsis

Keeps or removes fields from search results.

 Syntax

fields [+|-] <wc-field-list>

 Required arguments

<wc-field-list>
Syntax: <string>, ...
Description: Comma-delimited list of fields to keep (+) or remove (-); can
include wildcards.

 Description

Keeps (+) or removes (-) fields based on the field list criteria. If + is specified,
only the fields that match one of the fields in the list are kept. If - is specified,
only the fields that match one of the fields in the list are removed.

Without either + or -, it is the equivalent to calling with + and adding _* to the list
-- that is, "fields x, y" is the same as "fields + x, y, _*".

Important: The leading underscore is reserved for all internal Splunk field
names, such as _raw and _time. By default, internal fields _raw and _time are
included in output. The fields command does not remove internal fields unless
explicitly specified with:

... | fields - _*

or more explicitly, with:

... | fields - _raw,_time

Note: DO NOT remove the _time field when you pipe results to statistical
commands.

 Examples

Example 1: Remove the "host" and "ip" fields.

... | fields - host, ip

181

Example 2: Keep only the "host" and "ip" fields, and display them in the order:
"host", "ip". Note that this also removes the internal fields, which begin with an
underscore (such as _time).

... | fields host, ip | fields - _*

Example 3: Keep only the fields 'source', 'sourcetype', 'host', and all fields
beginning with 'error'.

... | fields source, sourcetype, host, error*

 See also

rename, table

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the fields command.

 fieldsummary

 Synopsis

Generates summary information for all or a subset of the fields.

 Syntax

fieldsummary [maxvals=<num>] [<wc-field-list>]

 Optional arguments

maxvals
Syntax: maxvals=<num>
Description: Specifies the maximum distinct values to return for each
field. Default is 100.

wc-field-list
Syntax:
Description: A field, or list of fields, including wildcarded fields.

182

 Examples

Example 1: Return summaries for all fields.

... | fieldsummary

Example 2: Returns summaries for only fields that start with date_ and return
only the top 10 values for each field.

... | fieldsummary maxvals=10 date_*

 See also

af, anomalies, anomalousvalue, stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has about using the fieldsummary command.

 filldown

 Synopsis

Replace null values with last non-null value.

 Syntax

filldown <wc-field-list>

 Description

Replace null values with the last non-null value for a field or set of fields. If no list
of fields is given, filldown will be applied to all fields. If there were not any
previous values for a field, it will be left blank (NULL).

 Examples

Example 1: Filldown null values values for all fields.

... | filldown

Example 2: Filldown null values for the count field only.

183

... | filldown count

Example 3: Filldown null values for the count field and any field that starts with
'score'.

... | filldown count score*

 See also

fillnull

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the filldown command.

 fillnull

 Synopsis

Replaces null values with a specified value.

 Syntax

fillnull [value=string] <field-list>

 Required arguments

field-list
Syntax: <field>...
Description: One or more fields, delimited with a space. If not specified,
fillnull is applied to all fields.

 Optional arguments

value
Datatype: <string>
Description: Replaces null values with a user specified value (default 0)

 Description

Replaces null values with a user specified value (default 0). Null values are those
missing in a particular result, but present for some other result. If a field-list is

184

provided, fillnull is applied to only fields in the given list (including any fields that
does not exist at all). Otherwise, applies to all existing fields.

 Examples

Example 1: For the current search results, fill all empty fields with NULL.

... | fillnull value=NULL

Example 2: For the current search results, fill all empty field values of "foo" and
"bar" with NULL.

... | fillnull value=NULL foo bar

Example 3: For the current search results, fill all empty fields with zero.

... | fillnull

Example 4: Build a time series chart of web events by host and fill all empty
fields with NULL.

sourcetype="web" | timechart count by host | fillnull value=NULL

 See also

streamstats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the fillnull command.

 findtypes

 Synopsis

Generates suggested eventtypes.

 Syntax

findtypes max=<int> [notcovered] [useraw]

185

 Required arguments

max
Datatype: <int>
Description: The maximum number of events to return. Defaults to 10.

 Optional arguments

notcovered
Description: If this keyword is used, findtypes returns only event types
that are not already covered.

useraw
Description: If this keyword is used, findtypes uses phrases in the _raw
text of events to generate event types.

 Description

The findtypes command takes the results of a search and produces a list of
promising searches that may be used as event types. At most, 5000 events are
analyzed for discovering event types.

 Examples

Example 1: Discover 10 common event types.

... | findtypes

Example 2: Discover 50 common event types and add support for looking at text
phrases.

... | findtypes max=50 useraw

 See also

typer

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the findtypes command.

186

 folderize

 Synopsis

Replaces attr with higher-level grouping, such as replacing filenames with
directories.

 Syntax

folderize attr=string [sep=string] [size=string] [minfolders=int] [maxfolders=int]

 Arguments

attr
Syntax: attr=<string>
Description: Replaces the attr attribute value with a more generic
value, which is the result of grouping it with other values from other
results, where grouping happens via tokenizing the attr value on the sep
separator value.

sep
Syntax: sep=<string>
Description: Used to construct output field names when multiple data
series are used in conjunctions with a split-by field. Defaults to ::

size
Syntax: size=<string>
Description: Defaults to totalCount.

minfolders
Syntax: minfolders=<int>
Description: Set the minimum number of folders to group. Defaults to 2.

maxfolders
Syntax: maxfolders=<int>
Description: Set the maximum number of folders to group. Defaults to 20.

 Description

Replaces the attr attribute value with a more generic value, which is the result
of grouping it with other values from other results, where grouping happens via
tokenizing the attr value on the sep separator value. For example, it can group

187

search results, such as those used on the Splunk homepage to list hierarchical
buckets (e.g. directories or categories). Rather than listing 200 sources on the
Splunk homepage, folderize breaks the source strings by a separator (e.g. /),
and determines if looking at just directories results in the number of results
requested. The default sep separator is ::; the default size attribute is
totalcount; the default minfolders is 2; and the default maxfolders is 20.

 Examples

Example 1: Example usage

| metadata type=sources | folderize maxfolders=20 attr=source sep="/"|

sort totalCount d

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the folderize command.

 format

 Synopsis

Takes the results of a subsearch and formats them into a single result.

 Syntax

format ["<string>" "<string>" "<string>" "<string>" "<string>" "<string>"]

 Optional arguments

<string>
Syntax: "<string>"
Description: These six optional string arguments correspond to: ["<row
prefix>" "<column prefix>" "<column separator>" "<column end>" "<row
separator>" "<row end>"]. By default, when you don't specify any strings,
the format output defaults to: "(" "(" "AND" ")" "OR" ")"

 Description

Used implicitly by subsearches, to take the search results of a subsearch and
return a single result that is a query built from the input search results.

188

 Examples

Example 1: Get top 2 results and create a search from their host, source and
sourcetype, resulting in a single search result with a "query" field: query=((
"host::mylaptop" AND "source::syslog.log" AND "sourcetype::syslog") OR
("host::bobslaptop" AND "source::bob-syslog.log" AND
"sourcetype::syslog"))

... | head 2 | fields source, sourcetype, host | format

Example 2: Increase the maximum number of events from the default to 2000 for
a subsearch to use in generating a search.

In limits.conf:

[format]
maxresults = 2000

and in the subsearch:

... | head 2 | fields source, sourcetype, host | format maxresults=2000

 See also

search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the format command.

 gauge

The gauge chart types enable you to see a single numerical value mapped
against a range of colors that may have particular business meaning or business
logic. As the value changes over time, the gauge marker changes position within
this range.

The gauge command enables you to indicate the field whose value will be
tracked by the gauge chart. You can define the overall numerical range
represented by the gauge, and you can define the size of the colored bands
within that range. If you want to use the color bands, you can add four "range
values" to the search string that indicate the beginning and end of the range as

189

well as the relative sizes of the color bands within it.

Read more about using the gauge command with the gauge chart type in the
Chart Gallery's subtopic about Gauge.

 Synopsis

Transforms results into a format suitable for display by the Gauge chart types.

 Syntax

gauge [<num>|<field>]...

 Arguments

num
Description: At least one real number, delimited by a space.

field
Description: The name of a field. The values of the field in the first input
row is used.

 Description

Each argument is either a real number or the name of a field. The first argument
is the gauge value and is required. Each argument after that is optional and
defines the range for different sections of the gauge. If you don't provide at least
two range numbers, the gauge will start at 0 and end at 100. If an argument is a
field name, the value of that field in the first input row is used. This command is
implemented as an external python script.

 Examples

Example 1: Count the number of events and display the count on a gauge with 4
regions, (0-750, 750-1000, 1000-1250,1250-1500).

index=_internal | stats count as myCount | gauge myCount 750 1000 1250

1500

190

There are three types of gauges that you can choose from: radial, filler, and
marker. You can see more examples of gauges in the Chart Gallery's subtopic
about Gauge.

 See also

eval, stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the gauge command.

 gentimes

 Synopsis

Generates time range results. This command is useful in conjunction with the
map command.

 Syntax

gentimes start=<timestamp> [end=<timestamp>] [<increment>]

 Required arguments

start
Syntax: start=<timestamp>
Description: Specify as start time.

<timestamp>

191

Syntax: (MM/DD/YY)?:(HH:MM:SS)?|<int>
Description: Indicate the time, for example: 10/1/07:12:34:56 (for October
1, 2007 12:34:56) or -5 (five days ago).

 Optional arguments

end
Syntax: end=<timestamp>
Description: Specify and end time.

<increment>
Syntax: increment=<int>(s|m|h|d)
Description: Specify a time period to increment from the start time to the
end time.

 Examples

Example 1: All HOURLY time ranges from oct 1 till oct 5

| gentimes start=10/1/07 end=10/5/07 increment=1h

Example 2: All daily time ranges from 30 days ago until 27 days ago

| gentimes start=-30 end=-27

Example 3: All daily time ranges from oct 1 till oct 5

| gentimes start=10/1/07 end=10/5/07

Example 4: All daily time ranges from oct 25 till today

| gentimes start=10/25/07

 See also

map

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the gentimes command.

192

 head

 Synopsis

Returns the first n number of specified results in search order.

This means the most recent n events for a historical search, or the first n
captured events for a realtime search.

 Syntax

head [<N> | <eval-expression>] [limit=<int>] [null=<bool>] [keeplast=<bool>]

 Optional arguments

eval-expression
Syntax: <eval-math-exp> | <eval-concat-exp> | <eval-compare-exp> |
<eval-bool-exp> | <eval-function-call>
Description: A valid eval expression that evaluates to a Boolean. Splunk
returns results until this expression evaluates to false. For more
information, see the Functions for eval.

keeplast
Syntax: keeplast=<bool>
Description: Controls whether or not to keep the last event, which caused
the eval expression to evaluate to false (or NULL).

limit
Syntax: limit=<int>
Description: Another way to specify the number of results to return.
Defaults to 10.

<N>
Syntax: <int>
Description: The number of results to return. If none is specified, Defaults
to 10.

null
Syntax: null=<bool>
Description: If instead of specifying a number N, you use a boolean eval
expression, this specifies how a null result should be treated. For
example, if the eval expression is (x > 10) and the field x does not exist,

193

the expression evaluates to NULL instead of true or false. So, null=true
means that the head command continues if it gets a null result, and
null=false means the command stops if that happens.

 Description

Returns the first n results, or 10 if no integer is specified. New for 4.0, can
provide a boolean eval expression, in which case we return events until that
expression evaluates to false.

 Examples

Example 1: Return the first 20 results.

... | head 20

Example 2: Return events until the time span of the data is >= 100 seconds

... | streamstats range(_time) as timerange | head (timerange<100)

 See also

reverse, tail

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the head command.

 highlight

 Synopsis

Causes ui to highlight specified terms.

 Syntax

highlight <string>+

 Required arguments

<string>
Syntax: <string>,...

194

Description: Comma-separated list of keywords to highlight in results.

 Description

Causes the strings provided to be highlighted by Splunk Web.

 Examples

Example 1: Highlight the terms "login" and "logout".

... | highlight login,logout

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the highlight command.

 history

 Synopsis

Returns a history of searches formatted as an events list or as a table.

 Syntax

history [events=<bool>]

 Arguments

events
Syntax: events= T | F
Description: Specify whether to return the search history as an events list
(T) or as a table (F). Defaults to F.

 Examples

Example 1: Return a table of the search history.

... | history

195

 See also

search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the history command.

 iconify

 Synopsis

Causes Splunk Web to make a unique icon for each value of the fields listed.

 Syntax

iconify <field-list>

 Required arguments

field-list
Syntax: <field>...
Description: Comma or space-delimited list of non-wildcarded fields.

 Description

Displays a different icon for each field's unique value. If multiple fields are listed,
the UI displays a different icon for each unique combination of the field values.

 Examples

Example 1: Displays an different icon for each eventtype.

... | iconify eventtype

Example 2: Displays an different icon for unique pairs of clientip and method
values.

... | iconify clientip method

Here's how Splunk displays the results in your Events List:

196

 See also

highlight

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the iconify command.

 input

 Synopsis

Adds or disables sources from being processed by Splunk.

 Syntax

input (add|remove) [sourcetype=string] [index=string] [string=string]*

 Optional arguments

sourcetype
Datatype: <string>
Description: Adds or removes (disables) sources from being processed
by splunk, enabling or disabling inputs in inputs.conf, with optional
sourcetype and index settings.

index
Datatype: <string>
Description: Adds or removes (disables) sources from being processed
by splunk, enabling or disabling inputs in inputs.conf, with optional
sourcetype and index settings.

197

 Description

Adds or removes (disables) sources from being processed by splunk, enabling or
disabling inputs in inputs.conf, with optional sourcetype and index settings. Any
additional attribute=values are set added to inputs.conf. Changes are logs to
$splunk_home/var/log/splunk/inputs.log. Generally to be used in conjunction
with the crawl command.

 Examples

Example 1: Remove all csv files that are currently being processed

| crawl | search source=*csv | input remove

Example 2: Add all sources found in bob's home directory to the 'preview' index
with sourcetype=text, setting custom user fields 'owner' and 'name'

| crawl root=/home/bob/txt | input add index=preview sourcetype=text

owner=bob name="my nightly crawl"

Example 3: Add each source found by crawl in the default index with automatic
source classification (sourcetyping)

| crawl | input add

 See also

crawl

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the input command.

 inputcsv

 Synopsis

Loads search results from the specified csv file.

 Syntax

inputcsv [append=<bool>] [start=<int>] [max=<int>] [events=<bool>] <filename>

198

 Required arguments

filename
Syntax: <filename>
Description: Specify the name of the CSV file, located in
$SPLUNK_HOME/var/run/splunk.

 Optional arguments

append
Syntax: append=<bool>
Description: Specifies whether the data from the CSV file is appended to
the current set of results (true) or replaces the current set of results (false).
Defaults to false.

events
Syntax: events=<bool>
Description: Allows the imported results to be treated as events so that a
proper timeline and fields picker are displayed.

max
Syntax: max=<int>
Description: Controls the maximum number of events to be read from the
file. Defaults to 1000000000.

start
Syntax: start=<int>
Description: Controls the 0-based offset of the first event to be read.
Defaults to 0.

 Description

Populates the results data structure using the given csv file, which is not
modified. The filename must refer to a relative path in
$SPLUNK_HOME/var/run/splunk and if the specified file does not exist and the
filename did not have an extension, then filename with a .csv extension is
assumed.

Note: If you run into an issue with inputcsv resulting in an error, make sure that
your CSV file ends with a BLANK LINE.

199

 Examples

Example 1: Read in results from the CSV file:
"$SPLUNK_HOME/var/run/splunk/all.csv", keep any that contain the string
"error", and save the results to the file:
"$SPLUNK_HOME/var/run/splunk/error.csv"

| inputcsv all.csv | search error | outputcsv errors.csv

Example 2: Read in events 101 to 600 from either file 'bar' (if exists) or 'bar.csv'.

| inputcsv start=100 max=500 bar

Example 3: Read in events from the CSV file:
"$SPLUNK_HOME/var/run/splunk/foo.csv".

| inputcsv foo.csv

 See also

outputcsv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the inputcsv command.

 inputlookup

 Synopsis

Loads search results from a specified static lookup table.

 Syntax

inputlookup [append=<bool>] [start=<int>] [max=<int>] (<filename> |
<tablename>)

 Required arguments

<filename>
Syntax: <string>
Description: The name of the lookup file (must end with .csv or .csv.gz).
If the lookup does not exist, Splunk will display a warning message (but it

200

won't cause a syntax error).

<tablename>
Syntax: <string>
Description: The name of the lookup table as specified by a stanza name
in transforms.conf.

 Optional arguments

append
Syntax: append=<bool>
Description: If set to true, the data from the lookup file is appended to the
current set of results rather than replacing it. Defaults to false.

max
Syntax max=<int>
Description: Specify the maximum number of events to be read from the
file. Defaults to 1000000000.

start
Syntax: start=<int>
Description: Specify the 0-based offset of the first event to read. If
start=0, it begins with the first event. If start=4, it begins with the fifth
event. Defaults to 0.

 Description

Reads in lookup table as specified by a filename (must end with .csv or .csv.gz)
or a table name (as specified by a stanza name in transforms.conf). If 'append' is
set to true (false by default), the data from the lookup file is appended to the
current set of results rathering than replacing it.

 Examples

Example 1: Read in "usertogroup" lookup table (as specified in transforms.conf).

| inputlookup usertogroup

Example 2: Same as example2 except that the data from the lookup table is
appended to any current results.

| inputlookup append=t usertogroup

201

Example 3: Read in "users.csv" lookup file (under
$SPLUNK_HOME/etc/system/lookups or $SPLUNK_HOME/etc/apps/*/lookups).

| inputlookup users.csv

 See also

inputcsv, join, lookup, outputlookup

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the inputlookup command.

 iplocation

 Synopsis

Extracts location information from ip addresses.

 Syntax

iplocation [maxinputs=<int>]

 Optional arguments

maxinputs
Syntax: maxinputs=<int>
Description: Specifies how many of the top results are passed to the
script.

 Description

Finds IPs in _raw and looks up the ip location using the hostip.info database ips
are extracted as ip1,ip2 etc. and Cities and Countries are likewise extracted.

 Examples

Example 1: Add location information (based on IP address).

202

... | iplocation

Example 2: Search for client errors in Web access events, add the location
information, and return a table of the IP address, City and Country for each client
error.

404 host="webserver1" | head 20 | iplocation | table clientip, City,

Country

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the iplocation command.

 join

A join is used to combine the results of a search and subsearch if specified fields
are common to each. You can also join a table to itself using the selfjoin
command.

 Synopsis

SQL-like joining of results from the main results pipeline with the results from the
subpipeline.

 Syntax

join [join-options]* <field-list> [subsearch]

 Required arguments

subsearch
Description: A search pipeline. Read more about how subsearches work
in the Search manual.

 Optional arguments

field-list
Syntax: <field>, ...
Description: Specify the exact fields to use for the join. If none are
specified, uses all fields that are common to both result sets.

join-options

203

Syntax: type=(inner|outer|left) | usetime=<bool> | earlier=<bool> |
overwrite=<bool> | max=<int>
Description: Options to the join command.

 Join options

type
Syntax: type=inner | outer | left
Description: Indicates the type of join to perform. Basically, the difference
between an inner and a left (or outer) join is how they treat events in the
main pipeline that do not match any in the subpipeline. In both cases,
events that match are joined. The results of an inner join will not include
any events with no matches. A left (or outer) join does not require each
event to have matching field values; and the joined result retains each
event?even if there is no match with any rows of the subsearch. Defaults
to inner.

usetime
Syntax: usetime=<bool>
Description: Indicates whether to limit matches to sub-results that are
earlier or later than the main result to join with. Defaults to false.

earlier
Syntax: earlier=<bool>
Description: If usetime=true, specify whether to join with matches that
are earlier (true) or later (false) than the main result. Defaults to true.

overwrite
Syntax: overwrite=<bool>
Description: Indicates if fields from the sub results should overwrite those
from the main result if they have the same field name. Defaults to true.

max
Syntax: max=<int>
Description: Indicates the maximum number of sub-results each main
result can join with. If max=0, means no limit. Defaults to 1.

 Description

Traditional join command that joins results from the main results pipeline with the
results from the search pipeline provided as the last argument. Optionally
specifies the exact fields to join on. If no fields specified, will use all fields that are
common to both result sets.

204

 Examples

Example 1: Joins previous result set with results from 'search foo', on the id field.

... | join id [search foo]

 See also

selfjoin, append, set, appendcols

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the join command.

 kmeans

 Synopsis

Performs k-means clustering on selected fields.

 Syntax

kmeans [kmeans-options]* <field-list>

 Required arguments

field-list
Syntax: <field>, ...
Description: Specify the exact fields to use for the join. If none are
specified, uses all fields that are common to both result sets.

 Optional arguments

kmeans-options
Syntax: <reps>|<iters>|<tol>|<k>|<cnumfield>|<distype>
Description: Options for the kmeans command.

 kmeans options

reps
Syntax: reps=<int>

205

Description: Specify the number of times to repeat kmeans using random
starting clusters. Defaults to 10.

iters
Syntax: maxiters=<int>
Description: Specify the maximum number of iterations allowed before
failing to converge. Defaults to 10000.

tol
Syntax: tol=<num>
Description: Specify the algorithm convergence tolerance. Defaults to 0.

k
Syntax: k=<int>|<int>-<int>
Description: Specify the number of initial clusters to use. This value can
be expressed as a range; in this case, each value in the range will be
used once and the summary data given. Defaults to 2.

cnumfield
Syntax: cfield=<field>
Description: Names the field for the cluster number for each event.
Defaults to CLUSTERNUM.

distype
Syntax: dt=l1|l1norm|cityblock|cb|l2|l2norm|sq|sqeuclidean|cos|cosine
Description: Specify the distance metric to use. L1/L1NORM is
equivalent to CITYBLOCK. L2NORM is equivalent to SQEULIDEAN.
Defaults to L2NORM.

 Description

Performs k-means clustering on select fields (or all numerical fields if empty).
Events in the same cluster will be moved next to each other. Optionally the
cluster number for each event is displayed.

 Examples

Example 1: Group search results into 4 clusters based on the values of the
"date_hour" and "date_minute" fields.

... | kmeans k=4 date_hour date_minute

Example 2: Group results into 2 clusters based on the values of all numerical
fields.

206

... | kmeans

 See also

anomalies, anomalousvalue, cluster, outlier,

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the kmeans command.

 kvform

 Synopsis

Extracts values from search results, using a form template.

 Syntax

kvform [form=<string>] [field=<field>]

 Optional arguments

form
Syntax: form=<string>
Description: Specify a .form file located in
$SPLUNK_HOME/etc/apps/.../form.

field
Syntax: <field>
Description: The name of the field to extract. Defaults to sourcetype.

 Description

Extracts key/value pairs from events based on a form template that describes
how to extract the values. If form is specified, it uses an installed form.form file
found in the Splunk configuration form directory. For example, if
form=sales_order, would look for a sales_order.form file in
$PLUNK_HOME/etc/apps/.../form. All the events processed would be matched
against that form, trying to extract values.

207

If no FORM is specified, then the field value determines the name of the field to
extract. For example, if field=error_code, then an event that has an
error_code=404, would be matched against a 404.form file.

The default value for field is sourcetype, thus by default the kvform command
will look for SOURCETYPE.form files to extract values.

A .form file is essentially a text file of all static parts of a form. It may be
interspersed with named references to regular expressions of the type found in
transforms.conf. An example .form file might look like this:

Students Name: [[string:student_name]]
Age: [[int:age]] Zip: [[int:zip]]

 Examples

Example 1: Extract values from "eventtype.form" if the file exists.

... | kvform field=eventtype

 See also

extract, multikv, rex, xmlkv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the kvform command.

 loadjob

 Synopsis

Loads events or results of a previously completed search job.

 Syntax

loadjob (<sid>|<savedsearch-opt>) [<result-event>] [<delegate>]
[<artifact-offset>] [<ignore-running>]

208

 Required arguments

sid
Syntax: <string>
Description: The search ID of the job whose artifacts need to be loaded,
for example: 1233886270.2

savedsearch
Syntax:
savedsearch="<user-string>:<application-string>:<search-name-string>"
Description: The unique identifier of a savedsearch whose artifacts need
to be loaded. A savedsearch is uniquely identified by the triplet {user,
application, savedsearch name}, for example:
savedsearch="admin:search:my saved search"

 Optional arguments

result-event
Syntax: events=<bool>
Description: Controls whether to load the events or the results of a job.
Defaults to false (loads results).

delegate
Syntax: job_delegate=<string>
Description: When specifying a savedsearch, this option selects jobs that
were started by the given user. Defaults to scheduler.

artifact-offset
Syntax: artifact_offset=<int>
Description: If multiple artifacts are found, this specifies which of those
should be loaded. Artifacts are sorted in descending order based on the
time that they were started. Defaults to 0.

ignore_running
Syntax: ignore_running=<bool>
Description: Specify whether to ignore matching artifacts whose search is
still running. Defaults to true.

 Description

The artifacts to load are identified either by the search job id or a scheduled
search name and the time range of the current search. If a savedsearch name is
provided and multiple artifacts are found within that range the latest artifacts are

209

loaded.

 Examples

Example 1: Loads the results of the latest scheduled execution of savedsearch
MySavedSearch in the 'search' application owned by admin

| loadjob savedsearch="admin:search:MySavedSearch"

Example 2: Loads the events that were generated by the search job with
id=1233886270.2

| loadjob 1233886270.2 events=t

 See also

inputcsv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the loadjob command.

 localize

 Synopsis

Returns a list of time ranges in which the search results were found.

 Syntax

localize [<maxpause>] [<timeafter>] <timebefore>

 Required arguments

timebefore
Syntax: timebefore=<int>(s|m|h|d)
Description: Specify the amount of time to subtract from starttime
(expand the time region backwards in time). Defaults to 30s.

210

 Optional arguments

maxpause
Syntax: maxpause=<int>(s|m|h|d)
Description: Specify the maximum (inclusive) time between two
consecutive events in a contiguous time region. Defaults to 1m.

timeafter
Syntax: maxpause=<int>(s|m|h|d)
Description: Specify the amount of time to add to endtime (expand the
time region forward in time). Defaults to 30s.

 Description

Generates a list of time contiguous event regions defined as: a period of time in
which consecutive events are separated by at most 'maxpause' time. The found
regions can be expanded using the 'timeafter' and 'timebefore' modifiers to
expand the range after/before the last/first event in the region respectively. The
Regions are return in time descending order, just as search results (time of
region is start time). The regions discovered by localize are meant to be feed into
the map command, which will use a different region for each iteration. Localize
also reports: (a) number of events in the range, (b) range duration in seconds
and (c) region density defined as (#of events in range) divided by (range
duration) - events per second.

 Examples

Example 1: Search the time range of each previous result for "failure".

... | localize maxpause=5m | map search="search failure

starttimeu=$starttime$ endtimeu=$endtime$"

Example 2: As an example, searching for "error" and then calling localize finds
good regions around where error occurs, and passes each on to the search
inside of the map command, so that each iteration works with a specific
timerange to find promising transactions

error | localize | map search="search starttimeu::$starttime$

endtimeu::$endtime$ |transaction uid,qid maxspan=1h"

 See also

map, transaction

211

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the localize command.

 localop

 Synopsis

Prevents subsequent commands from being executed on remote peers.

 Syntax

localop

 Description

Prevents subsequent commands from being executed on remote peers, i.e.
forces subsequent commands to be part of the reduce step.

 Examples

Example 1: The iplocation command in this case will never be run on remote
peers. All events from remote peers from the initial search for the terms FOO and
BAR will be forwarded to the search head where the iplocation command will be
run.

FOO BAR | localop | iplocation

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the localop command.

 lookup

Use the lookup command to manually invoke field lookups from a lookup table
that you've defined in transforms.conf. For more information, see "Lookup fields
from external data sources," in the Knowledge Manager manual.

212

 Synopsis

Explicitly invokes field value lookups.

 Syntax

lookup [local=<bool>] [update=<bool>] <lookup-table-name> (<lookup-field> [AS
<local-field>]) (OUTPUT | OUTPUTNEW <lookup-destfield> [AS
<local-destfield>])

 Required arguments

<lookup-table-name>
Syntax: <string>
Description: Refers to a stanza name in transforms.conf. This stanza
specifies the location of the lookup table file.

 Optional arguments

local
Syntax: local=<bool>
Description: If the 'local' option is set to true, it will ensure that the lookup
is only done locally and not on any remote peers.

update
Syntax: update=<bool>
Description: If the lookup table is updated on disk while the search is
running, real-time searches will reflect the update while non-real-time
search will not. If you want to automatically update lookups for real-time
searches, specify update=true (this also implies that local=true). Defaults
to false.

<local-destfield>
Syntax: <string>
Description: Refers to the field in the local event, defaults to the value of
<lookup-destfield>.

<local-field>
Syntax: <string>
Description: Refers to the field in the local event, defaults to the value of
<lookup-field>.

213

<lookup-destfield>
Syntax: <string>
Description: Refers to a field in the lookup table to be copied to the local
event.

<lookup-field>
Syntax: <string>
Description: Refers to a field in the lookup table to match to the local
event.

 Description

Use the lookup command to invoke field value lookups manually.

If an OUTPUT clause is not specified, all fields in the lookup table that are not
specified as a lookup will be used as output fields. If OUTPUT is specified, the
output lookup fields will overwrite existing fields. If OUTPUTNEW is specified, the
lookup will not be performed for events in which the output fields already exist.

 Examples

Example 1: There is a lookup table specified in a stanza name 'usertogroup' in
transform.conf. This lookup table contains (at least) two fields, 'user' and 'group'.
For each event, we look up the value of the field 'local_user' in the table and for
any entries that matches, the value of the 'group' field in the lookup table will be
written to the field 'user_group' in the event.

... | lookup usertogroup user as local_user OUTPUT group as user_group

 Optimizing your lookup search

If you're using the lookup command in the same pipeline as a reporting
command, do the lookup after the reporting command. For example, run:

sourcetype=access_* | stats count by status | lookup status_desc status
OUTPUT description

instead of:

sourcetype=access_* | lookup status_desc status OUTPUT description |
stats count by description

214

The lookup in the first search is faster because it only needs to match the results
of the stats command and not all the Web access events.

 See also

appendcols, inputlookup, outputlookup

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the lookup command.

 makecontinuous

 Synopsis

Makes a field that is supposed to be the x-axis continuous (invoked by
chart/timechart).

 Syntax

makecontinuous [<field>] <bucketing-option>*

 Required arguments

<bucketing-option>
Datatype: bins | span | start-end
Description: Discretization options. See "Bucketing options" for details.

 Optional arguments

<field>
Datatype: <field>
Description: Specify a field name.

 Bucketing options

bins
Syntax: bins=<int>
Description: Sets the maximum number of bins to discretize into.

215

span
Syntax: <log-span> | <span-length>
Description: Sets the size of each bucket, using a span length based on
time or log-based span.

<start-end>
Syntax: end=<num> | start=<num>
Description:Sets the minimum and maximum extents for numerical
buckets. Data outside of the [start, end] range is discarded.

 Log span syntax

<log-span>
Syntax: [<num>]log[<num>]
Description: Sets to log-based span. The first number is a coefficient.
The second number is the base. If the first number is supplied, it must be
a real number >= 1.0 and < base. Base, if supplied, must be real number
> 1.0 (strictly greater than 1).

 Span length syntax

span-length
Syntax: [<timescale>]
Description: A span length based on time.

Syntax: <int>
Description: The span of each bin. If using a timescale, this is used as a
time range. If not, this is an absolute bucket "length."

<timescale>
Syntax: <sec> | <min> | <hr> | <day> | <month> | <subseconds>
Description: Time scale units.

<sec>
Syntax: s | sec | secs | second | seconds
Description: Time scale in seconds.

<min>
Syntax: m | min | mins | minute | minutes
Description: Time scale in minutes.

<hr>

216

Syntax: h | hr | hrs | hour | hours
Description: Time scale in hours.

<day>
Syntax: d | day | days
Description: Time scale in days.

<month>
Syntax: mon | month | months
Description: Time scale in months.

<subseconds>
Syntax: us | ms | cs | ds
Description: Time scale in microseconds (us), milliseconds (ms),
centiseconds (cs), or deciseconds (ds).

 Description

 Examples

Example 1: Make "_time" continuous with a span of 10 minutes.

... | makecontinuous _time span=10m

 See also

chart, timechart

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the makecontinuous command.

 makemv

 Synopsis

Changes a specified field into a multi-value field during a search.

217

 Syntax

makemv [delim=<string>|tokenizer=<string>] [allowempty=<bool>] [setsv=<bool>]
<field>

 Required arguments

field
Syntax: <field>
Description: Specify the name of a field.

 Optional arguments

delim
Syntax: delim=<string>
Description: Defines one or more characters that separate each field
value. Defaults to a single space (" ").

tokenizer
Syntax: tokenizer=<string>
Description: Defines a regex tokenizer to delimit the field values.

allowempty
Syntax: allowempty=<bool>
Description: Specifies whether or not consecutive delimiters should be
treated as one. Defaults to false.

setsv
Syntax: setsv=<bool>
Description: The setsv boolean option controls if the original value of the
field should be kept for the single valued version. Defaults to false.

 Description

Treat specified field as multi-valued, using either a simple string delimiter (can be
multicharacter), or a regex tokenizer.

 Examples

Example 1: For sendmail search results, separate the values of "senders" into
multiple values. Then, display the top values.

eventtype="sendmail" | makemv delim="," senders | top senders

218

Example 2: Separate the value of "foo" into multiple values.

... | makemv delim=":" allowempty=t foo

 See also

mvcombine, mvexpand, nomv,

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the makemv command.

 map

 Synopsis

Looping operator, performs a search over each search result.

 Syntax

map (<searchoption>|<savedsplunkoption>) [maxsearches=int]

 Required arguments

<savedsplunkoption>
Syntax: <string>
Description: Name of a saved search. No default.

<searchoption>
Syntax: [<subsearch>] | search="<string>"
Description: The search to map. The search argument can either be a
subsearch to run or just the name of a saved search. The argument also
supports the metavariable: $_serial_id$, a 1-based serial number within
map of the search being executed, for example: [search
starttimeu::$start$ endtimeu::end source="$source$"]. No default.

 Optional arguments

maxsearches
Syntax: maxsearches=<int>

219

Description: The maximum number of searches to run. This will generate
a message if there are more search results. Defaults to 10.

 Description

For each input (each result of a previous search), the map command iterates
through the field-values from that result and substitutes their value for the
$variable$ in the search argument. For more information,

Read "About subsearches" in the Search Manual.•
Read "How to use the search command" in the Search Manual.•

 Examples

Example 1: Invoke the map command with a saved search.

error | localize | map mytimebased_savedsearch

Example 2: Maps the start and end time values.

... | map search="search starttimeu::$start$ endtimeu::end"

maxsearches=10

Example 3: This example illustrates how to find a sudo event and then use the
map command to trace back to the computer and the time that users logged on
before the sudo event. Start with the following search for the sudo event:

sourcetype=syslog sudo | stats count by user host

Which returns a table of results, such as:

User Host Count
userA serverA 1

userB serverA 3

userA serverB 2

When you pipe these results into the map command, substituting the username:

sourcetype=syslog sudo | stats count by user host | map search="search

index=ad_summary username=$user$ type_logon=ad_last_logon

It takes each of the three results from the previous search and searches in the
ad_summary index for the user's logon event. The results are returned as a table,
such as:

_time computername computertime username usertime

220

10/12/12
8:31:35.00 AM Workstation$ 10/12/2012

08:25:42 userA 10/12/2012
08:31:35 AM

(Thanks to Alacercogitatus for this example.)

 See also

gentimes, search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the map command.

 metadata

 Synopsis

Returns a list of source, sourcetypes, or hosts from a specified index or
distributed search peer.

 Syntax

| metadata [type=<metadata-type>] [<index-specifier>] [<server-specifier>]

 Optional arguments

type
Syntax: type= hosts | sources | sourcetypes
Description: Specify the type of metadata to return.

index-specifier
Syntax: index=<index_name>
Description: Specify the index from which to return results.

server-specifier
Syntax: splunk_server=<string>
Description: Specify the distributed search peer from which to return
results. If used, you can specify only one splunk_server.

221

 Description

The metadata command returns data about a specified index or distributed
search peer. It returns information such as a list of the hosts, sources, or source
types accumulated over time and when the first, last, and most recent event was
seen for each value of the specified metadata type. It does not provide a
snapshot of an index over a specific timeframe (such as last 7 days). For
example, if you search for:

| metadata type=hosts

Your results will look something like this:

Where:

firstTime is the timestamp for the first time that the indexer saw an event
from this host.

•

lastTime is the timestamp for the last time that the indexer saw an event
from this host.

•

recentTime is the indextime for the most recent time that the index saw an
event from this host (that is, the time of the last update).

•

totalcount is the total number of events seen from this host.•
type is the specified type of metadata to display. Because this search
specifies type=hosts, there is also a host column.

•

In most cases, when the data is streaming live, lastTime and recentTime are
equal. However, if the data is historical, then the values of these fields could be
different.

 Examples

Example 1: Return the values of "host" for events in the "_internal" index.

| metadata type=hosts index=_internal

Example 2:Return values of "sourcetype" for events in the "_audit" index on
server foo.

| metadata type=sourcetypes index=_audit splunk_server=foo

222

 See also

dbinspect

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the metadata command.

 metasearch

 Synopsis

Retrieves event metadata from indexes based on terms in the
<logical-expression>.

 Syntax

metasearch [<logical-expression>]

 Optional arguments

<logical-expression>
Syntax: <time-opts>|<search-modifier>|((NOT)?
<logical-expression>)|<index-expression>|<comparison-expression>|(<logical-expression>
(OR)? <logical-expression>)
Description: Includes time and search modifiers; comparison and index
expressions.

 Logical expression

<comparison-expression>
Syntax: <field><cmp><value>
Description: Compare a field to a literal value or values of another field.

<index-expression>
Syntax: "<string>"|<term>|<search-modifier>

<time-opts>
Syntax: (<timeformat>)? (<time-modifier>)*

223

 Comparison expression

<cmp>
Syntax: = | != | < | <= | > | >=
Description: Comparison operators.

<field>
Syntax: <string>
Description: The name of a field.

<lit-value>
Syntax: <string> | <num>
Description: An exact, or literal, value of a field; used in a comparison
expression.

<value>
Syntax: <lit-value> | <field>
Description: In comparison-expressions, the literal (number or string)
value of a field or another field name.

 Index expression

<search-modifier>
Syntax: <field-specifier>|<savedsplunk-specifier>|<tag-specifier>

 Time options

Splunk allows many flexible options for searching based on time. For a list of
time modifiers, see the topic "Time modifiers for search"

<timeformat>
Syntax: timeformat=<string>
Description: Set the time format for starttime and endtime terms. By
default, the timestamp is formatted: timeformat=%m/%d/%Y:%H:%M:%S .

<time-modifier>
Syntax: earliest=<time_modifier> | latest=<time_modifier>
Description: Specify start and end times using relative or absolute time.
Read more about time modifier syntax in "Specify time modifiers in your
search".

224

 Description

Retrieves event metadata from indexes based on terms in the
<logical-expression>. Metadata fields include source, sourcetype, host, _time,
index, and splunk_server.

 Examples

Example 1: Return metadata for events with "404" and from host "webserver1".

404 host="webserver1"

 See also

metadata, search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the metasearch command.

 multikv

 Synopsis

Extracts field-values from table-formatted events.

 Syntax

multikv [conf=<stanza_name>] [<multikv-option>]*

 Required arguments

<multikv-option>
Syntax: copyattrs=<bool> | fields <field-list> | filter <field-list> |
forceheader=<int> | multitable=<bool> | noheader=<bool> | rmorig=<bool>
Description: Options for extracting fields from tabular events.

 Optional arguments

conf
Syntax: conf=<stanza_name>

225

Description: If you have a field extraction defined in multikv.conf, use
this argument to reference the stanza in your search. For more
information, refer to the configuration file reference for multikv.conf in the
Admin Manual.

 Multikv options

copyattrs
Syntax: copyattrs=<bool>
Description: Controls the copying of non-metadata attributes from the
original event to extract events. Default is true.

fields
Syntax: fields <field-list>
Description: Filters out from the extracted events fields that are not in the
given field list.

filter
Syntax: filter <field-list>
Description: If specified, a table row must contain one of the terms in the
list before it is extracted into an event.

forceheader
Syntax: forceheader=<int>
Description: Forces the use of the given line number (1 based) as the
table's header. By default a header line is searched for.

multitable
Syntax: multitable=<bool>
Descriptions: Controls whether or not there can be multiple tables in a
single _raw in the original events. (default = true)

noheader
Syntax: noheader=<bool>
Description: Allow tables with no header. If no header fields would be
named column1, column2, ... (default = false)

rmorig
Syntax: rmorig=<bool>
Description: Controls the removal of original events from the result set.
(default=true)

226

 Description

Extracts fields from events with information in a tabular format (e.g. top, netstat,
ps, ... etc). A new event will be created for each table row. Field names will be
derived from the title row of the table.

 Examples

Example 1: Extract the "COMMAND" field when it occurs in rows that contain
"splunkd".

... | multikv fields COMMAND filter splunkd

Example 2: Extract the "pid" and "command" fields.

... | multikv fields pid command

 See also

extract, kvform, rex, xmlkv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the multikv command.

 multisearch

 Synopsis

Run multiple searches at the same time.

 Syntax

... | multisearch <subsearch1> <subsearch2> <subsearch3> ...

 Required arguments

<subsearch>
Syntax:
Description: At least two streaming searches.

227

 Description

Executes multiple *streaming* searches at the same time. Must specify at least 2
subsearches and only purely streaming operations are allowed in each
subsearch (e.g. search, eval, where, fields, rex, ...)

 Examples

Example 1: Search for both events from index a and b and add different fields
using eval in each case.

... | multisearch [search index=a | eval type = "foo"] [search index=b |

eval mytype = "bar"]

 See also

append, join

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the multisearch command.

 mvcombine

 Synopsis

Combines events in the search results that have a single differing field value into
one result with a multi-value field of the differing field.

 Syntax

mvcombine [delim=<string>] <field>

 Required arguments

field
Syntax: <field>
Description: The name of a multivalue field.

228

 Optional arguments

delim
Syntax: delim=<string>
Description: Defines the string character to delimit each value. Defaults
to a single space, (" ").

 Description

For each group of results that are identical except for the given field, combine
them into a single result where the given field is a multivalue field. delim controls
how values are combined, defaulting to a space character (" ").

 Examples

Example 1: Combine the values of "foo" with ":" delimiter.

... | mvcombine delim=":" foo

Example 2: Suppose you have three events that are the same except for the IP
address value:

Nov 28 11:43:48 2010 host=datagen-host1 type=dhclient: bound to
ip=209.202.23.154
message= ASCII renewal in 5807 seconds.

Nov 28 11:43:49 2010 host=datagen-host1 type=dhclient: bound to
ip=160.149.39.105
message= ASCII renewal in 5807 seconds.

Nov 28 11:43:49 2010 host=datagen-host1 type=dhclient: bound to
ip=199.223.167.243
message= ASCII renewal in 5807 seconds.

This search returns the three IP address in one field and delimits the values with
a comma, so that ip="209.202.23.154, 160.149.39.105, 199.223.167.243".

... | mvcombine delim="," ip

Example 3: In a multivalued events:

sourcetype="WMI:WinEventLog:Security" | fields EventCode,
Category,RecordNumber | mvcombine delim="," RecordNumber | nomv

RecordNumber

229

 See also

makemv, mvexpand, nomv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the mvcombine command.

 mvexpand

 Synopsis

Expands the values of a multi-value field into separate events for each value of
the multi-value field.

 Syntax

mvexpand <field> [limit=<int>]

 Required arguments

field
Syntax: <field>
Description: The name of a multivalue field.

 Optional arguments

limit
Syntax: limit=<int>
Description: Specify the number of values of <field> to use for each input
event. Default is 0, or no limit.

 Description

For each result with the specified field, create a new result for each value of that
field in that result if it a multivalue field.

230

 Examples

Example 1: Create new events for each value of multi-value field, "foo".

... | mvexpand foo

Example 2: Create new events for the first 100 values of multi-value field, "foo".

... | mvexpand foo limit=100

Example 3: The mvexpand command only works on one multivalued field. This
example walks through how to expand an event with more than one multivalued
field into individual events for each field's value. For example, given these
events, with sourcetype=data:

2012-10-01 00:11:23 a=22 b=21 a=23 b=32 a=51 b=24
2012-10-01 00:11:22 a=1 b=2 a=2 b=3 a=5 b=2

First, use the rex command to extract the field values for a and b. Then, use the
eval command and mvzip function to create a new field from the values of a and
b.

sourcetype=data | rex field=_raw "a=(?<a>\d+)" max_match=5 | rex
field=_raw "b=(?\d+)" max_match=5 | eval fields = mvzip(a,b) | table

_time fields

Use mvexpand and the rex command on the new field, fields, to create new
events and extract the fields alpha and beta:

sourcetype=data | rex field=_raw "a=(?<a>\d+)" max_match=5 | rex
field=_raw "b=(?\d+)" max_match=5 | eval fields = mvzip(a,b) |
mvexpand fields | rex field=fields "(?<alpha>\d+),(?<beta>\d+)" | table

_time alpha beta

Use the table command to display only the _time, alpha, and beta fields in a

results table:

231

(Thanks to Duncan for this example. You can see another version of this with
JSON data and the spath command.)

 See also

makemv, mvcombine, nomv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the mvexpand command.

 nomv

 Synopsis

Changes a specified multi-value field into a single-value field at search time.

 Syntax

nomv <field>

 Required arguments

field
Syntax: <field>
Description: The name of a multivalue field.

 Description

Converts values of the specified multi-valued field into one single value
(overrides multi-value field configurations set in fields.conf).

 Examples

Example 1: For sendmail events, combine the values of the senders field into a
single value; then, display the top 10 values.

eventtype="sendmail" | nomv senders | top senders

232

 See also

makemv, mvcombine, mvexpand, convert

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the nomv command.

 outlier

 Synopsis

Removes outlying numerical values.

 Syntax

outlier <outlier-option>* [<field-list>]

 Required arguments

<outlier-option>
Syntax: <action> | <param> | <type> | <uselower>
Description: Outlier options.

 Optional arguments

<field-list>
Syntax: <field>, ...
Description: Comma-delimited list of field names.

 Outlier options

<type>
Syntax: type=iqr
Description: Type of outlier detection. Currently, the only option available
is IQR (inter-quartile range).

<action>
Syntax: action=rm | remove | tf | transform

233

Description: Specify what to do with outliers. RM | REMOVE removes the
event containing the outlying numerical value. TF | TRANSFORM
truncates the outlying value to the threshold for outliers and prefixes the
value with "000". Defaults to tf.

<param>
Syntax: param=<num>
Description: Parameter controlling the threshold of outlier detection. For
type=IQR, an outlier is defined as a numerical value that is outside of
param multiplied the inter-quartile range. Defaults to 2.5.

<uselower>
Syntax: uselower=<bool>
Description: Controls whether to look for outliers for values below the
median. Defaults to false|f.

 Description

Removes or truncates outlying numerical values in selected fields. If no fields are
specified, then outlier will attempt to process all fields.

 Examples

Example 1: For a timechart of webserver events, transform the outlying average
CPU values.

404 host="webserver" | timechart avg(cpu_seconds) by host | outlier

action=tf

Example 2: Remove all outlying numerical values.

... | outlier

 See also

anomalies, anomalousvalue, cluster, kmeans

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the outlier command.

234

 outputcsv

 Synopsis

Outputs search results to the specified csv file.

 Syntax

outputcsv [append=<bool>] [create_empty=<bool>] [dispatch=<bool>]
[usexml=<bool>] [singlefile=<bool>] [<filename>]

 Optional arguments

append
Syntax: append=<bool>
Description: If 'append' is true, we will attempt to append to an existing
csv file if it exists or create a file if necessary. If there is an existing file that
has a csv header already, we will only emit the fields that are referenced
by that header. .gz files cannot be append to. Defaults to false.

create_empty
Syntax: create_empty=<bool>
Description: If set to true and there are no results, creates a 0-length file.
When false, no file is created and the files is deleted if it previously
existed. Defaults to false.

dispatch
Syntax: dispatch=<bool>
Description: If set to true, refers to a file in the job directory in
$SPLUNK_HOME/var/run/splunk/dispatch/<job id>/.

filename
Syntax: <filename>
Description: Specify the name of a csv file to write the search results.
This file should be located in $SPLUNK_HOME/var/run/splunk. If no filename
specified, rewrites the contents of each result as a CSV row into the
"_xml" field. Otherwise writes into a file (appends ".csv" to filename if
filename has no existing extension).

singlefile
Syntax: singlefile=<bool>

235

Description: If singlefile is set to true and output spans multiple files,
collapses it into a single file.

usexml
Syntax: usexml=<bool>
Description: If there is no filename, specifies whether or not to encode
the csv output into XML. This option should not specified when invoking
outputcsv from the UI.

 Examples

Example 1: Output search results to the CSV file 'mysearch.csv'.

... | outputcsv mysearch

 See also

inputcsv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the outputcsv command.

 outputlookup

 Synopsis

Writes search results to the specified static lookup table.

 Syntax

outputlookup [append=<bool>] [create_empty=<bool>] [max=<int>]
[createinapp=<bool>] (<filename> | <tablename>)

 Required arguments

<filename>
Syntax: <string>
Description: The name of the lookup file (must end with .csv or .csv.gz).

<tablename>

236

Syntax: <string>
Description: The name of the lookup table as specified by a stanza name
in transforms.conf.

 Optional arguments

append
Syntax: append=<bool>
Description: If 'append' is true, we will attempt to append to an existing
csv file if it exists or create a file if necessary. If there is an existing file that
has a csv header already, we will only emit the fields that are referenced
by that header. .gz files cannot be append to. Defaults to false.

max
Syntax: max=<int>
Description: The number of rows to output.

create_empty
Syntax: create_empty=<bool>
Descriptopn: If set to true and there are no results, creates a 0-length file.
When false, no file is created and the files is deleted if it previously
existed. Defaults to true.

createinapp
Syntax: createinapp=<bool>
Description: If set to false or if there is no current application context,
then create the file in the system lookups directory.

 Description

Saves results to a lookup table as specified by a filename (must end with .csv or
.gz) or a table name (as specified by a stanza name in transforms.conf). If the
lookup file does not exist, Splunk creates the file in the lookups directory of the
current application. If the lookup file already exists, Splunk overwrites that
files with the results of outputlookup. If the 'createinapp' option is set to false
or if there is no current application context, then Splunk creates the file in the
system lookups directory.

 Examples

Example 1: Write to "usertogroup" lookup table (as specified in transforms.conf).

| outputlookup usertogroup

237

Example 2: Write to "users.csv" lookup file (under
$SPLUNK_HOME/etc/system/lookups or $SPLUNK_HOME/etc/apps/*/lookups).

| outputlookup users.csv

 See also

inputlookup, lookup, outputcsv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the outputlookup command.

 outputtext

 Synopsis

Outputs the raw text (_raw) of results into the _xml field.

 Syntax

outputtext [usexml=<bool>]

 Optional arguments

usexml
Syntax: usexml=<bool>
Description: If usexml is set to true (the default), the _raw field is xml
escaped.

 Description

Rewrites the _raw field of the result into the _xml field. If usexml is set to true
(the default), the _raw field is xml escaped.

 Examples

Example 1: Output the "_raw" field of your current search into "_xml".

238

... | outputtext

 See also

outputcsv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the outputtext command.

 overlap

Note: We do not recommend using the overlap command to fill/backfill summary
indexes. There is script, called fill_summary_index.py, that will backfill your
indexes or fill summary index gaps. For more information, refer to this Knowledge
Manager manual topic.

 Synopsis

Finds events in a summary index that overlap in time or have missed events.

 Syntax

overlap

 Description

Find events in a summary index that overlap in time, or find gaps in time during
which a scheduled saved search may have missed events.

If you find a gap, run the search over the period of the gap and summary
index the results (using "| collect").

•

If you find overlapping events, manually delete the overlaps from the
summary index by using the search language.

•

The overlap command invokes an external python script (in
etc/searchscripts/sumindexoverlap.py), which expects input events from the
summary index and finds any time overlaps and gaps between events with the
same 'info_search_name' but different 'info_search_id'.

239

Important: Input events are expected to have the following fields:
'info_min_time', 'info_max_time' (inclusive and exclusive, respectively) ,
'info_search_id' and 'info_search_name' fields. If the index contains raw events
(_raw), the overlap command will not work. Instead, the index should contain
events such as chart, stats, and timechart results.

 Examples

Example 1: Find overlapping events in "summary".

index=summary | overlap

 See also

collect, sistats, sitop, sirare, sichart, sitimechart

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the overlap command.

 predict

 Synopsis

Predict future values of fields.

 Syntax

predict <variable_to_predict> [AS <newfield_name>] [<predict_option>]

 Required arguments

<variable_to_predict>
Syntax: <field>
Description: The field name for the variable that you want to predict.

 Optional arguments

<newfield>
Syntax: <string>
Description: Renames the field name for <variable_to_predict>.

240

<predict_option>
Syntax: algorithm=<algorithm_name> | correlate_field=<field> |
future_timespan=<number> | holdback=<number> | period=<number> |
lowerXX=<field> | upperYY=<field>
Description: Forecasting options. All options can be specified anywhere
in any order.

 Predict options

algorithm
Syntax: algorithm= LL | LLP | LLT | LLB
Description: Specify the name of the forecasting algorithm to apply: LL
(local level), LLP (seasonal local level), LLT (local level trend), or LLB
(bivariate local level). Each algorithm expects a minimum number of data
points; for more information, see "Algorithm options" below.

correlate
Syntax: correlate=<field>
Description: For bivariate model, indicates the field to correlate against.

future_timespan
Syntax: future_timespan=<number>
Description: The length of prediction into the future. Must be a
non-negative number.

holdback
Syntax: holdback=<number>
Description: Specifies not to use the last <number> of data points to build
the model. Typically, this is used to compare the predicted values to the
actual data.

lowerXX
Syntax: lower<int>=<field>
Description: Specifies a field name for the lower <int> percentage
confidence interval. <int> is greater than or equal to 0 and less than 100.
Defaults to lower95.

period
Syntax: period=<number>
Description: If algorithm=LLP, specify the seasonal period of the time
series data. If not specified, the period is automatically computed. If
algorithm is not LLP, this is ignored.

241

upperYY
Syntax: upper<int>=<field>
Description: Specifies a field name for the upper <int> percentage
confidence interval. <int> is greater than or equal to 0 and less than 100.
Defaults to upper95.

 Algorithm options

The algorithm names are: LL, LLP, LLT and LLB. The first three deal with
univariate time series while the fourth deals with bivariate time series. Each
algorithm above expects a minimum number of data points. If not enough
effective data points are supplied, an error message will be displayed. For
instance, the field itself may have more than enough data points, but the number
of effective data points may be small if the holdback is large.

Algorithm
option

Algorithm
name Description

LL Local level This is a univariate model with no trends and no seasonality.
Expects a minimum of 2 data points.

LLP Seasonal local
level

This is a univariate model with seasonality. The periodicity of
the time series is automatically computed. Expects a
minimum twice the period in data points.

LLT Local level
trend

This is a univariate model with trend but no seasonality.
Expects a minimum of 3 data points.

LLB Bivariate local
level

This is a bivariate model with no trends and no seasonality.
Expects a minimum of 2 data points.

 Examples

Example 1: Predict future downloads based on the previous download numbers.

index=download | timechart span=1d count(file) as count | predict count

Example 2: Predict the values of foo using LL or LLP, depending on whether foo
is periodic.

... | timechart span="1m" count AS foo | predict foo

242

Example 3: Upper and lower confidence intervals need not be equaled.

... | timechart span="1m" count AS foo | predict foo as fubar

algorithm=LL upper90=high lower97=low future_timespan=10 holdback=20

Example 4: Illustrates the LLB algorithm. The foo2 field is predicted by
correlating it with the foo1 field.

... | timechart span="1m" count(x) AS foo1 count(y) AS foo2 | predict

foo2 as fubar algorithm=LLB correlate=foo1 holdback=100

 See also

trendline, x11

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has about using the predict command.

 rangemap

The rangemap command lets you classify ranges of values for numerical fields
with more descriptive names.

 Synopsis

Sets range field to the name of the ranges that match.

 Syntax

rangemap field=<string> (<attribute_name>=<integer_range>)...
[default=<string>]

 Required arguments

attribute_name
Syntax: <string>
Description: The name or attribute for the specified numerical range.

field
Syntax: field=<string>
Description: The name of the input field. This field should be numeric.

243

<integer_range>
Syntax: <start>-<end>
Description: Define the starting integer and ending integer values for the
range attributed to the "attribute_name" parameter. This can include
negative values. For example: Dislike=-5--1, DontCare=0-0, Like=1-5.

 Optional arguments

default
Syntax: default=<string>
Description: If the input field doesn't match a range, use this to define a
default value. If you don't define a value, defaults to "None".

 Description

Sets the range field to the names of any attribute_name that the value of the
input field is within. If no range is matched the range value is set to the default
value.

The ranges that you set can overlap. If you have overlapping values, all the
values that apply are shown in the events. For example, if low=1-10,
elevated=5-15, and the input field value is 10, then range=low elevated.

 Examples

Example 1: Set range to "green" if the date_second is between 1-30; "blue", if
between 31-39; "red", if between 40-59; and "gray", if no range matches (for
example, if date_second=0).

... | rangemap field=date_second green=1-30 blue=31-39 red=40-59

default=gray

Example 2: Sets the value of each event's range field to "low" if its count field is
0 (zero); "elevated", if between 1-100; "severe", otherwise.

... | rangemap field=count low=0-0 elevated=1-100 default=severe

 Using rangemap with single value panels

The Single Value dashboard panel type can be configured to use rangemap
values; for example, Splunk ships with CSS that defines colors for low, elevated,
and severe. You can customize the CSS for these values to apply different
colors. Also, you have to edit the XML for the view to associate the colors with
the range value; to do this:

244

1. Go to Manager >> User interface >> Views and select the view you want to
edit.

2. For the single value panel that uses the rangemap search, include the
following line underneath the <title /> tags:

<option name="classField">range</option>

So, if you had a view called "Example" and your search was named, "Count of
events", your XML might look something like this:

<?xml version='1.0' encoding='utf-8'?>
<dashboard>
 <label>Example</label>
 <row>
 <single>
 <searchName>Count of events</searchName>
 <title>Count of events</title>
 <option name="classField">range</option>
 </single>
 </row>
</dashboard>

 See also

eval

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the rangemap command.

 rare

 Synopsis

Displays the least common values of a field.

245

 Syntax

rare <top-opt>* <field-list> [<by-clause>]

 Required arguments

<field-list>
Syntax: <string>,...
Description: Comma-delimited list of field names.

<top-opt>
Syntax: countfield=<string> | limit=<int> | percentfield=<string> |
showcount=<bool> | showperc=<bool>
Description: Options for rare (same as top).

 Optional arguments

<by-clause>
Syntax: by <field-list>
Description: The name of one or more fields to group by.

 Top options

countfield
Syntax: countfield=<string>
Description: Name of a new field to write the value of count, default is
"count".

limit
Syntax: limit=<bool>
Description: Specifies how many tuples to return, "0" returns all values.

percentfield
Syntax: percentfield=<string>
Description: Name of a new field to write the value of percentage, default
is "percent".

showcount
Syntax: showcount=<bool>
Description: Specify whether to create a field called "count" (see
"countfield" option) with the count of that tuple. Default is true.

showpercent

246

Syntax: showpercent=<bool>
Description: Specify whether to create a field called "percent" (see
"percentfield" option) with the relative prevalence of that tuple. Default is
true.

 Description

Finds the least frequent tuple of values of all fields in the field list. If optional
by-clause is specified, this command will return rare tuples of values for each
distinct tuple of values of the group-by fields.

 Examples

Example 1: Return the least common values of the "url" field.

... | rare url

Example 2: Find the least common "user" value for a "host".

... | rare user by host

 See also

top, stats, sirare

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the rare command.

 regex

 Synopsis

Removes or keeps results that match the specified regular expression.

 Syntax

regex <field>=<regex-expression> | <field>!=<regex-expression> |
<regex-expression>

247

 Required arguments

<regex-expression>
Syntax: "<string>"
Description: A Perl Compatible Regular Expression supported by the
PCRE library. Quotes are required.

 Optional arguments

<field>
Syntax: <field>
Description: Specify the field name from which to match the values
against the regular expression. If no field is specified, the match is against
"_raw".

 Description

The regex command removes results that do not match the specified regular
expression. You can specify for the regex to keep results that match the
expression (field=regex-expression) or to keep those that do not match
(field!=regex-expression).

Note: If you want to use the "OR" ("|") command in a regex argument, the whole
regex expression must be surrounded by quotes (that is, regex "expression").

 Examples

Example 1: Keep only search results whose "_raw" field contains IP addresses
in the non-routable class A (10.0.0.0/8).

... | regex _raw="(?=!\d)10.\d{1,3}\.\d{1,3}\.\d{1,3}(?!\d)"

Example 3: Example usage

... | regex _raw="complicated|regex(?=expression)"

 See also

rex, search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the regex command.

248

 relevancy

 Synopsis

Calculates how well the event matches the query.

 Syntax

relevancy

 Description

Calculates the 'relevancy' field based on how well the events _raw field matches
the keywords of the 'search'. Useful for retrieving the best matching
events/documents, rather than the default time-based ordering. Events score a
higher relevancy if they have more rare search keywords, more frequently, in
fewer terms. For example a search for disk error will favor a short
event/document that has 'disk' (a rare term) several times and 'error' once, than a
very large event that has 'disk' once and 'error' several times.

 Examples

Example 1: Calculate the relevancy of the search and sort the results in
descending order.

disk error | relevancy | sort -relevancy

 See also

abstract, highlight, sort

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the relevancy command.

 reltime

249

 Synopsis

Creates a relative time field, called 'reltime', and sets it to a human readable
value of the difference between 'now' and '_time'.

 Syntax

reltime

 Description

Sets the 'reltime' field to a human readable value of the difference between 'now'
and '_time'. Human-readable values look like "5 days ago", "1 minute ago", "2
years ago", etc.

 Examples

Example 1: Add a reltime field.

... | reltime

 See also

convert

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the reltime command.

 rename

Use the rename command to rename fields. This command is useful for giving
fields more meaningful names, such as "Product ID" instead of "pid". If you want
to rename multiple fields, you can use wildcards.

 Synopsis

Renames a specified field or multiple fields.

250

 Syntax

rename wc-field AS wc-field

 Required arguments

wc-field
Syntax: <string>
Description: The name of a field and the name to replace it. Can be
wildcarded.

 Description

Use quotes to rename a field to a phrase:

... | rename SESSIONID AS sessionID

Use wildcards to rename multiple fields:

... | rename *ip AS IPaddress

If both the source and destination fields are wildcard expressions with the same
number of wildcards, the renaming will carry over the wildcarded portions to the
destination expression. See Example 2, below.

Note: You cannot rename one field with multiple names. For example if you had
a field A, you can't do "A as B, A as C" in one string.

... | stats first(host) AS site, first(host) AS report

Note: You do not want to use this command to merge multiple fields into one
field. For example, if you had events with either product_id or pid fields, ... |
rename pid AS product_id would not merge the pid values into the product_id
field. It overwrites product_id with Null values where pid does not exist for the
event. Instead, see the eval command and coalesce() function.

 Examples

Example 1: Rename the "_ip" field as "IPAddress".

... | rename _ip as IPAddress

Example 2: Rename fields beginning with "foo" to begin with "bar".

... | rename foo* as bar*

Example 3: Rename the "count" field.

251

... | rename count as "CountofEvents"

 See also

fields, table

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the rename command.

 replace

 Synopsis

Replaces values of specified fields with a specified new value.

 Syntax

replace (<wc-str> with <wc-str>)+ [in <field-list>]

 Required arguments

wc-string
Syntax: <string>
Description: Specify one or more field values and their replacements.
You can include wildcards to match.

 Optional arguments

field-list
Syntax: <string>
Description: Specify a comma-delimited list of field names in which to do
the field value replacement.

 Description

Replaces a single occurrence of the first string with the second within the
specified fields (or all fields if none were specified). Non-wildcard replacements
specified later take precedence over those specified earlier. For wildcard
replacement, fuller matches take precedence over lesser matches. To assure
precedence relationships, one is advised to split the replace into two separate

252

invocations. When using wildcarded replacements, the result must have the
same number of wildcards, or none at all. Wildcards (*) can be used to specify
many values to replace, or replace values with.

 Examples

Example 1: Change any host value that ends with "localhost" to "localhost".

... | replace *localhost with localhost in host

Example 2: Example usage.

... | replace "* localhost" with "localhost *" in host

Example 3: Change the value of two fields.

... | replace aug with August in start_month end_month

Example 5: Replace an IP address with a more descriptive name.

... | replace 127.0.0.1 with localhost in host

Example 6: Replace values of a field with more descriptive names.

... | replace 0 with Critical, 1 with Error in msg_level

Example 7: Search for an error message and replace empty strings with a
whitespace. Note: This example won't work unless you have values that are
actually the empty string, which is not the same as not having a value.

"Error exporting to XYZ :" | rex "Error exporting to XYZ:(?.*)" |

replace "" with " " in errmsg

 See also

fillnull, rename

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the replace command.

 rest

253

 Synopsis

Access a REST endpoint and display the returned entities as search results.

 Syntax

rest <rest-uri> [<splunk-server>=<string>] [timeout=<int>]
(<get-arg-name>=<get-arg-value>)...

 Required arguments

rest-uri
Syntax: <uri>
Description: URI path to the REST endpoint.

get-arg-name
Syntax: <string>
Description: REST argument name.

get-arg-value
Syntax: <string>
Description: REST argument value.

 Optional arguments

splunk-server
Syntax: splunk_server=<string>
Description: Optional, argument specifies whether or not to limit results to
one specific server. Use "local" to refer to the search head.

timeout
Syntax: timeout=<int>
Description: Specify the timeout in seconds when waiting for the REST
endpoint to respond. Defaults to 60 seconds.

 Examples

Example 1: Access saved search jobs.

| rest /services/search/jobs count=0 splunk_server=local | search

isSaved=1

254

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has about using the rest command.

 return

 Synopsis

Returns values from a subsearch.

 Syntax

return [<count>] [<alias>=<field>] [<field>] [$<field>]

 Arguments

<count>
Syntax: <int>
Description: Specify the number of rows. Defaults to 1, which is the first
row of results passed into the command.

<alias>
Syntax: <alias>=<field>
Description: Specify the field alias and value to return.

<field>
Syntax: <field>
Description: Specify the field to return.

<$field>
Syntax: <$field>
Description: Specify the field values to return.

 Description

The return command is for passing values up from a subsearch. Replaces the
incoming events with one event, with one attribute: "search". To improve
performance, the return command automatically limits the number of incoming
results with head and the resulting fields with the fields.

255

The command also allows convenient outputting of field=value, 'return source',
alias=value, 'return ip=srcip', and value, 'return $srcip'.

The return command defaults to using as input just the first row of results that
are passed to it. Multiple rows can be specified with count, for example 'return 2
ip'; and each row is ORed, that is, output might be '(ip=10.1.11.2) OR
(ip=10.2.12.3)'. Multiple values can be specified and are placed within OR
clauses. So, 'return 2 user ip' might output '(user=bob ip=10.1.11.2) OR
(user=fred ip=10.2.12.3)'.

In most cases, using the return command at the end of a subsearch removes
the need for head, fields, rename, format, and dedup.

 Examples

Example 1: Search for 'error ip=<someip>', where someip is the most recent ip
used by Boss.

error [search user=boss | return ip]

Example 2: Search for 'error (user=user1 ip=ip1) OR (user=user2 ip=ip2)',
where users and IPs come from the two most-recent logins.

error [search login | return 2 user, ip]

Example 3: Return to eval the userid of the last user, and increment it by 1.

... | eval nextid = 1 + [search user=* | return $id] | ...

 See also

format, search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the return command.

 reverse

 Synopsis

Reverses the order of the results. Note: the reverse command does not affect
which events are returned by the search, only the order in which they are

256

displayed. For the CLI, this includes any default or explicit maxout setting.

 Syntax

reverse

 Examples

Example 1: Reverse the order of a result set.

... | reverse

 See also

head, sort, tail

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the reverse command.

 rex

 Synopsis

Specifies a Perl regular expression named groups to extract fields while you
search.

 Syntax

rex [field=<field>] (<regex-expression> [max_match=<int>] | mode=sed
<sed-expression>)

 Required arguments

field
Syntax: field=<field>
Description: The field that you want to extract information from.

regex-expression
Syntax: "<string>"

257

Description: A Perl Compatible Regular Expression supported by the
PCRE library. Quotes are required.

sed-expression
Syntax: "<string>"
Description: Use Unix sed syntax to replace strings or substitute
characters. For more information, see Anonymize data in the Getting Data
In manual. Quotes are required.

 Optional arguments

max_match
Syntax: max_match=<int>
Description: Controls the number of times the regex is matched. If
greater than 1, the resulting fields will be multivalued fields. Defaults to 1,
use 0 to mean unlimited.

 Description

Matches the value of the field against the unanchored regex and extracts the Perl
regex named groups into fields of the corresponding names. If mode is set to
'sed' the given sed expression will be applied to the value of the chosen field (or
to _raw if a field is not specified).

 Examples

Example 1: Extract "from" and "to" fields using regular expressions. If a raw
event contains "From: Susan To: Bob", then from=Susan and to=Bob.

... | rex field=_raw "From: (?<from>.*) To: (?<to>.*)"

Example 2: Extract "user", "app" and "SavedSearchName" from a field called
"savedsearch_id" in scheduler.log events. If
savedsearch_id=bob;search;my_saved_search then user=bob , app=search and
SavedSearchName=my_saved_search

... | rex field=savedsearch_id

"(?<user>\w+);(?<app>\w+);(?<SavedSearchName>\w+)"

Example 3: Use sed syntax to match the regex to a series of numbers and
replace them with an anonymized string.

... | rex mode=sed "s/(\\d{4}-){3}/XXXX-XXXX-XXXX-/g"

258

 See also

extract, kvform, multikv, regex, spath, xmlkv,

 rtorder

 Synopsis

Buffers events from real-time search to emit them in ascending time order when
possible.

 Syntax

rtorder [discard=<bool>] [buffer_span=<span-length>] [max_buffer_size=<int>]

 Optional arguments

buffer_span
Syntax: buffer_span=<span-length>
Description: Specify the length of the buffer. Default is 10 seconds.

discard
Syntax: discard=<bool>
Description: Specifies whether or not to always discard out-of-order
events. Default is false.

max_buffer_size
Syntax: max_buffer_size=<int>
Description: Specifies the maximum size of the buffer. Default is 50000,
or the max_result_rows setting of the [search] stanza in limits.conf.

 Description

The rtorder command creates a streaming event buffer that takes input events,
stores them in the buffer in ascending time order, and emits them in that order
from the buffer only after the current time reaches at least the span of time given
by buffer_span after the timestamp of the event.

Events will also be emitted from the buffer if the maximum size of the buffer is
exceeded.

259

If an event is received as input that is earlier than an event that has already been
emitted previously, that out of order event will be emitted immediately unless the
discard option is set to true. When discard is set to true, out of order events will
always been discarded, assuring that the output is always strictly in time
ascending order.

 Examples

Example 1: Keep a buffer of the last 5 minutes of events, emitting events in
ascending time order once they are more than 5 minutes old. Newly received
events that are older than 5 minutes are dicarded if an event after that time has
already been emitted.

... | rtorder discard=t buffer_span=5m

 See also

sort

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the rtorder command.

 run

See script.

 savedsearch

 Synopsis

Returns the search results of a saved search.

 Syntax

savedsearch <savedsearch name> [<savedsearch-opt>]*

260

 Required arguments

savedsearch name
Syntax: <string>
Description: Name of the saved search to run.

savedsearch-opt
Syntax: <macro>|<replacementt>
Description: The savedsearch options lets you specify either no
substitution or the key/value pair to use in the macro replacement.

 Savedsearch options

macro
Syntax: nosubstitution=<bool>
Description: If true, no macro replacements are made. Defaults to false.

replacement
Syntax: <field>=<string>
Description: A key/value pair to use in macro replacement.

 Description

Runs a saved search, possibly cached by disk. Also, performs macro
replacement.

 Examples

Example 1: Run the "mysecurityquery" saved search.

| savedsearch mysecurityquery

 See also

search

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the savedsearch command.

261

 script

 Synopsis

Makes calls to external Perl or Python programs.

 Syntax

script (perl|python) <script-name> [<script-arg>]* [maxinputs=<int>]

 Required arguments

script-name
Syntax: <string>
Description: The name of the script to execute, minus the path and file
extension.

 Optional arguments

maxinputs
Syntax: maxinputs=<int>
Description: Determines how many of the top results are passed to the
script. Defaults to 100.

script-arg
Syntax: <string>
Description: One or more arguments to pass to the script. If passing
more than one argument, delimit each with a space.

 Description

Calls an external python or perl program that can modify or generate search
results. Scripts must live in splunk_home/etc/searchscripts and only a search
user with administrator privileges may execute them. If the script is a custom
search command, it should be located in
$SPLUNK_HOME/etc/apps/<app_name>/bin/. To invoke the script:

For python, use splunk_home/bin/python•
For perl, use /usr/bin/perl•

262

 Examples

Example 1: Run the Python script "myscript" with arguments, myarg1 and
myarg2; then, email the results.

... | script python myscript myarg1 myarg2 | sendemail

to=david@splunk.com

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the script command.

 scrub

 Synopsis

Anonymizes the search results.

 Syntax

scrub [public-terms=<filename>] [private-terms=<filename>]
[name-terms=<filename>] [dictionary=<filename>] [timeconfig=<filename>]

 Optional arguments

public-terms
Syntax: public-terms=<filename>
Description: Specify a filenname that includes the public terms to be
anonymized.

private-terms
Syntax: private-terms=<filename>
Description: Specify a filenname that includes the private terms to be
anonymized.

name-terms
Syntax: name-terms=<filename>
Description: Specify a filenname that includes names to be anonymized.

dictionary
Syntax: dictionary=<filename>

263

Description: Specify a filename that includes a dictionary of terms to be
anonymized. Defaults to dictionary and configuration files found in
$SPLUNK_HOME/etc/anonymizer .

timeconfig
Syntax: timeconfig=<filename>
Description: Specify a filename that includes time configurations to be
anonymized.

 Description

Anonymizes the search results by replacing identifying data - usernames, ip
addresses, domain names, etc. - with fictional values that maintain the same
word length. For example, it may turn the string user=carol@adalberto.com into
user=aname@mycompany.com. This lets Splunk users share log data without
revealing confidential or personal information. By default the dictionary and
configuration files found in $splunk_home/etc/anonymizer are used. These can
be overridden by specifying arguments to the scrub command. The arguments
exactly correspond to the settings in the stand-alone splunk anonymize
command, and are documented there.

Anonymizes all attributes, exception those that start with _ (except _raw) or
date_, or the following attributes: eventtype, linecount, punct,
sourcetype, timeendpos, timestartpos.

 Examples

Example 1: Anonymize the current search results.

... | scrub

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the scrub command.

 search

Use the search command to retrieve events from your indexes, using keywords,
quoted phrases, wildcards, and key/value expressions. The command is implicit
when it's the first search command (used at the beginning of a pipeline). When
it's not the first command in the pipeline, it's used to filter the results of the

264

previous command.

After you retrieve events, you can apply commands to them to transform, filter,
and report on them. Use the vertical bar "|" , or pipe character, to apply a
command to the retrieved events.

 Synopsis

Retrieve events from indexes or filter the results of a previous search command
in the pipeline.

 Syntax

search <logical-expression>

 Arguments

<logical-expression>
Syntax: <time-opts> | <search-modifier> | [NOT] <logical-expression> |
<index-expression> | <comparison-expression> | <logical-expression>
[OR] <logical-expression>
Description: Includes all keywords or key/value pairs used to describe
the events to retrieve from the index. These filters can be defined using
Boolean expressions, comparison operators, time modifiers, search
modifiers, or combinations of expressions.

 Logical expression

<comparison-expression>
Syntax: <field><cmp><value>
Description: Compare a field to a literal value or values of another field.

<index-expression>
Syntax: "<string>" | <term> | <search-modifier>
Description: Describe the events you want to retrieve from the index
using literal strings and search modifiers.

<time-opts>
Syntax: [<timeformat>] (<time-modifier>)*
Description: Describe the format of the starttime and endtime terms of
the search

265

 Comparison expression

<cmp>
Syntax: = | != | < | <= | > | >=
Description: Comparison operators. You can use comparison
expressions when searching field/value pairs. Comparison expressions
with "=" and "!=" work with all field/value pairs. Comparison expressions
with < > <= >= work only with fields that have numeric values.

<field>
Syntax: <string>
Description: The name of a field.

<lit-value>
Syntax: <string> | <num>
Description: An exact or literal value of a field. Used in a comparison
expression.

<value>
Syntax: <lit-value> | <field>
Description: In comparison-expressions, the literal (number or string)
value of a field or another field name.

 Index expression

<string>
Syntax: "<string>"
Description: Specify keywords or quoted phrases to match. When
searching for strings and quoted strings (anything that's not a search
modifier), Splunk searches the _raw field for the matching events or
results.

<search-modifier>
Syntax:
<sourcetype-specifier>|<host-specifier>|<source-specifier>|<savedsplunk-specifier>|<eventtype-specifier>|<tag-specifier>
Description: Search for events from specified fields or field tags. For
example, search for one or a combination of hosts, sources, source types,
saved searches, and event types. Also, search for the field tag, with the
format: </code>tag=<field>::<string></code>.

Read more about searching with default fields in the Knowledge Manager
manual.

•

266

Read more about using tags and field alias in the Knowledge Manager
manual.

•

 Time options

Splunk allows many flexible options for searching based on time. For a list of
time modifiers, see the topic "Time modifiers for search"

<timeformat>
Syntax: timeformat=<string>
Description: Set the time format for starttime and endtime terms. By
default, the timestamp is formatted: timeformat=%m/%d/%Y:%H:%M:%S .

<time-modifier>
Syntax: starttime=<string> | endtime=<string> | earliest=<time_modifier> |
latest=<time_modifier>
Description: Specify start and end times using relative or absolute time.

You can also use the earliest and latest attributes to specify absolute and
relative time ranges for your search. Read more about this time modifier
syntax in "About search time ranges" in the Search manual.

•

starttime
Syntax: starttime=<string>
Description: Events must be later or equal to this time. Must match
timeformat.

endtime
Syntax: endtime=<string>
Description: All events must be earlier or equal to this time.

 Description

The search command enables you to use keywords, phrases, fields, boolean
expressions, and comparison expressions to specify exactly which events you
want to retrieve from a Splunk index(es).

Some examples of search terms are:

keywords: error login•
quoted phrases: "database error"•
boolean operators: login NOT (error OR fail)•
wildcards: fail*•

267

field values: status=404, status!=404, or status>200•

Read more about how to "Use the search command to retrieve events" in the
Search Manual.

 Quotes and escaping characters

Generally, you need quotes around phrases and field values that include
white spaces, commas, pipes, quotes, and/or brackets. Quotes must be
balanced, an opening quote must be followed by an unescaped closing quote.
For example:

A search such as error | stats count will find the number of events
containing the string error.

•

A search such as ... | search "error | stats count" would return the
raw events containing error, a pipe, stats, and count, in that order.

•

Additionally, you want to use quotes around keywords and phrases if you don't
want to search for their default meaning, such as Boolean operators and
field/value pairs. For example:

A search for the keyword AND without meaning the Boolean operator:
error "AND"

•

A search for this field/value phrase: error "startswith=foo"•

The backslash character (\) is used to escape quotes, pipes, and itself.
Backslash escape sequences are still expanded inside quotes. For example:

The sequence \| as part of a search will send a pipe character to the
command, instead of having the pipe split between commands.

•

The sequence \" will send a literal quote to the command, for example for
searching for a literal quotation mark or inserting a literal quotation mark
into a field using rex.

•

The \\ sequence will be available as a literal backslash in the command.•

Unrecognized backslash sequences are not altered:

For example \s in a search string will be available as \s to the command,
because \s is not a known escape sequence.

•

However, in the search string \\s will be available as \s to the command,
because \\ is a known escape sequence that is converted to \.

•

268

 Search with TERM()

You can use the TERM() directive when specifying search phrases. TERM forces
Splunk to match whatever is inside the parentheses as a single term in the index,
even if it contains characters that are usually recognized as breaks or delimiters
(such as underscores and spaces).

If you searched for the quoted phrase "error_type", Splunk ends up searching for
"error" and "type" and post filtering the results. This would also include events
that contained "error_type" as segments of other keywords or phrases, for
example "error_type.default" or "this_error_type". If you use TERM(error_type),
you force Splunk to exclude these other keywords.

 Search with CASE()

You can use the CASE() directive to search for terms and field values that are
case-sensitive.

 Examples

The following are just a few examples of how to use the search command. You
can find more examples in the Start Searching topic of the Splunk Tutorial.

Example 1: This example demonstrates key/value pair matching for specific
values of source IP (src) and destination IP (dst).

src="10.9.165.*" OR dst="10.9.165.8"

Example 2: This example demonstrates key/value pair matching with boolean
and comparison operators. Search for events with code values of either 10 or 29,
any host that isn't "localhost", and an xqp value that is greater than 5.

(code=10 OR code=29) host!="localhost" xqp>5

Example 3: This example demonstrates key/value pair matching with wildcards.
Search for events from all the webservers that have an HTTP client or server
error status.

host=webserver* (status=4* OR status=5*)

Example 4: This example demonstrates how to use search later in the pipeline
to filter out search results. This search defines a web session using the
transaction command and searches for the user sessions that contain more
than three events.

269

eventtype=web-traffic | transactions clientip startswith="login"

endswith="logout" | search eventcount>3

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the search command.

 searchtxn

 Synopsis

Finds transaction events within specified search constraints.

 Syntax

searchtxn <transaction-name> [max_terms=<int>] [use_disjunct=<bool>]
[eventsonly=<bool>] <search-string>

 Required arguments

<transaction-name>
Syntax: <transactiontype>
Description: The name of the transactiontype stanza that is defined in
transactiontypes.conf.

<search-string>
Syntax: <string>
Description: Terms to search for within the transaction events.

 Optional arguments

eventsonly
Syntax: eventsonly=<bool>
Description: If true, retrieves only the relevant events but does not run "|
transaction" command. Defaults to false.

max_terms
Syntax: maxterms=<int>
Description: Integer between 1-1000 which determines how many unique
field values all fields can use. Using smaller values will speed up search,
favoring more recent values. Defaults to 1000.

270

use_disjunct
Syntax: use_disjunct=<bool>
Description: Determines if each term in SEARCH-STRING should be
ORed on the initial search. Defaults to true.

 Description

Retrieves events matching the transaction type transaction-name with events
transitively discovered by the initial event constraint of the search-string.

For example, given an 'email' transactiontype with fields="qid pid" and with a
search attribute of 'sourcetype="sendmail_syslog"', and a search-string of
"to=root", searchtxn will find all the events that match
'sourcetype="sendmail_syslog" to=root'.

From those results, all the qid's and pid's are transitively used to find further
search for relevant events. When no more qid or pid values are found, the
resulting search is run:

'sourcetype="sendmail_syslog" ((qid=val1 pid=val1) OR (qid=valn pid=valm) |
transaction name=email | search to=root'

 Examples

Example 1: Find all email transactions to root from David Smith.

| searchtxn email to=root from="David Smith"

 See also

transaction

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the searchtxn command.

 selfjoin

271

 Synopsis

Joins results with itself.

 Syntax

selfjoin [<selfjoin-options>]* <field-list>

 Required arguments

<field-list>
Sytnax: <field>...
Description: Specify the field or list of fields to join on.

<selfjoin-options>
Syntax: overwrite=<bool> | max=<int> | keepsingle=<bool>
Description: Options for the selfjoin command. You can use a
combination of the three options.

 Selfjoin options

keepsingle
Syntax: keepsingle=<bool>
Description: Controls whether or not results with a unique value for the
join fields (which means, they have no other results to join with) should be
retained. Defaults to false.

max
Syntax: max=<int>
Description: Indicate the maximum number of 'other' results to join with
each main result. If 0, there is no limit. Defaults to 1.

overwrite
Sytnax: overwrite=<bool>
Description: Specify if fields from these 'other' results should overwrite
fields of the results used as the basis for the join. Defaults to true.

 Description

Join results with itself, based on a specified field or list of fields to join on. The
selfjoin options, overwrite, max, and keepsingle controls the out results of the
selfjoin.

272

 Examples

Example 1: Join results with itself on 'id' field.

... | selfjoin id

 See also

join

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the selfjoin command.

 set

 Synopsis

Performs set operations on subsearches.

 Syntax

set (union|diff|intersect) subsearch subsearch

 Required arguments

subsearch
Syntax: <string>
Description: Specifies a subsearch. For more information about
subsearch syntax, see "About subsearches" in the Search manual.

 Description

Performs two subsearches and then executes the specified set operation on the
two sets of search results:

The result of a union operation are events that result from either
subsearch.

•

The result of a diff operation are the events that result from either
subsearch that are not common to both.

•

273

The result of an intersect operation are the events that are common for
both subsearches.

•

Important: The set command works on less than 10 thousand results.

 Examples

Example 1: Return values of "URL" that contain the string "404" or "303" but not
both.

| set diff [search 404 | fields url] [search 303 | fields url]

Example 2: Return all urls that have 404 errors and 303 errors.

| set intersect [search 404 | fields url] [search 303 | fields url]

Note: When you use the fields command in your subsearches, it does not filter
out internal fields by default. If you don't want the set command to compare
internal fields, such as the _raw or _time fields, you need to explicitly exclude
them from the subsearches:

| set intersect [search 404 | fields url | fields - _*] [search 303 |

fields url | fields - _*]

 See also

append, appendcols, join, diff

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the set command.

 setfields

 Synopsis

Sets the field values for all results to a common value.

 Syntax

setfields <setfields-arg>, ...

274

 Required arguments

<setfields-arg>
Syntax: string="<string>"
Description: A key-value pair with quoted value. Standard key cleaning
will be performed, ie all non-alphanumeric characters will be replaced with
'_' and leading '_' will be removed.

 Description

Sets the value of the given fields to the specified values for each event in the
result set. Delimit multiple definitions with commas. Missing fields are added,
present fields are overwritten.

Whenever you need to change or define field values, you can use the more
general purpose eval command. See usage of an eval expression to set the
value of a field in Example 1.

 Examples

Example 1: Specify a value for the ip and foo fields.

... | setfields ip="10.10.10.10", foo="foo bar"

To do this with the eval command:

... | eval ip="10.10.10.10" | eval foo="foo bar"

 See also

eval, fillnull, rename

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the setfields command.

 sendemail

 Synopsis

Emails search results to specified email addresses.

275

 Syntax

sendemail to=<email_list> [from=<email_list>] [cc=<email_list>]
[bcc=<email_list>] [format= (html|raw|text|csv)] [inline= (true|false)]
[sendresults=(true|false)] [sendpdf=(true|false)] [priority=
(highest|high|normal|low|lowest)] [server=<string>]
[width_sort_columns=(true|false)] [graceful=(true|false)] [sendresults=<bool>]
[sendpdf=<bool>]

 Required arguments

to
Syntax: to=<email_list>
Description: List of email addresses to send search results to.

 Optional arguments

bcc
Syntax: bcc=<email_list>
Description: Blind cc line; comma-separated and quoted list of valid email
addresses.

cc
Syntax: cc=<email_list>
Description: Cc line; comma-separated quoted list of valid email
addresses.

format
Syntax: format= csv | html | raw |text
Description: Specifies how to format the email's contents. Defaults to
HTML.

from
Syntax: from=<email_list>
Description: Email address from line. Defaults to "splunk@<hostname>".

inline
Syntax: inline= true | false
Description: Specifies whether to send the results in the message body
or as an attachment. Defaults to true.

graceful
Syntax: graceful= true | false

276

Description: If set to true, no error is thrown, if email sending fails and
thus the search pipeline continues execution as if sendemail was not
there.

priority
Syntax: priority=highest | high | normal | low | lowest
Description: Set the priority of the email as it appears in the email client.
Lowest or 5, low or 4, high or 2, highest or 1; defaults to normal or 3.

sendpdf
Syntax: sendpdf=true | false
Description: Specify whether to send the results with the email as an
attached PDF or not. For more information about using Splunk's integrated
PDF generation functionality, see "Upgrade PDF printing for Splunk Web"
in the Installation Manual.

sendresults
Syntax: sendresults=true | false
Description: Determines whether the results should be included with the
email. Defaults to false.

server
Syntax: server=<string>
Description: If the SMTP server is not local, use this to specify it. Defaults
to localhost.

subject
Syntax: subject=<string>
Description: Specifies the subject line. Defaults to "Splunk Results".

width_sort_columns
Syntax: width_sort_columns=<bool>
Description: This is only valid when format=text. Specifies whether the
columns should be sorted by their width.

 Examples

Example 1: Send search results in HTML format with the subject "myresults".

... | sendemail to="elvis@splunk.com,john@splunk.com" format=html

subject=myresults server=mail.splunk.com sendresults=true

Example 2: Send search results to the specified email.

277

... | sendemail to="elvis@splunk.com" sendresults=true

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sendemail command.

 sichart

 Synopsis

Summary indexing friendly versions of chart command.

 Syntax

sichart chart_syntax

 Arguments

Refer to the chart command syntax.

 Description

Summary indexing friendly versions of chart command, using the same syntax.
Does not require explicitly knowing what statistics are necessary to store to the
summary index in order to generate a report.

Does require the chart command used to process this data have the exact same
arguments as were used with the sichart command to generate the data.

 Examples

Example 1: Compute the necessary information to later do 'chart avg(foo) by bar'
on summary indexed results.

... | sichart avg(foo) by bar

 See also

chart, collect, overlap, sirare, sistats, sitimechart, sitop

278

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sichart command.

 sirare

 Synopsis

Summary indexing friendly versions of rare command.

 Syntax

sirare rare_syntax

 Arguments

Refer to the rare command syntax.

 Description

Summary indexing friendly versions of rare command, using the same syntax.
Does not require explicitly knowing what statistics are necessary to store to the
summary index in order to generate a report.

Does require the rare command used to process this data have the exact same
arguments as were used with the sirare command to generate the data.

 Examples

Example 1: Compute the necessary information to later do 'rare foo bar' on
summary indexed results.

... | sirare foo bar

 See also

collect, overlap, sichart, sistats, sitimechart, sitop

279

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sirare command.

 sistats

 Synopsis

Summary indexing friendly versions of stats command.

 Syntax

sistats stats_syntax

 Arguments

Refer to the stats command syntax.

 Description

Summary indexing friendly versions of stats command, using the same syntax.
Does not require explicitly knowing what statistics are necessary to store to the
summary index in order to generate a report.

Does require the stats command used to process this data have the exact same
arguments as were used with the sistats command to generate the data.

 Examples

Example 1: Compute the necessary information to later do 'stats avg(foo) by bar'
on summary indexed results

... | sistats avg(foo) by bar

 See also

collect, overlap, sichart, sirare, sitop, sitimechart

280

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sistats command.

 sitimechart

 Synopsis

Summary indexing friendly versions of timechart command.

 Syntax

sitimechart timechart_syntax

 Arguments

Refer to the timechart command syntax.

 Description

Summary indexing friendly versions of timechart command, using the same
syntax. Does not require explicitly knowing what statistics are necessary to store
to the summary index in order to generate a report.

Does require the timechart command used to process this data have the exact
same arguments as were used with the sitimechart command to generate the
data.

 Examples

Example 1: Compute the necessary information to later do 'timechart avg(foo) by
bar' on summary indexed results.

... | sitimechart avg(foo) by bar

 See also

collect, overlap, sichart, sirare, sistats, sitop

281

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sitimechart command.

 sitop

 Synopsis

Summary indexing friendly versions of top command.

 Syntax

sitop top_syntax

 Arguments

Refer to the top command syntax.

 Description

Summary indexing friendly versions of top command, using the same syntax.
Does not require explicitly knowing what statistics are necessary to store to the
summary index in order to generate a report.

Does require the top command used to process this data have the exact same
arguments as were used with the sitop command to generate the data.

 Examples

Example 1: Compute the necessary information to later do 'top foo bar' on
summary indexed results.

... | sitop foo bar

 See also

collect, overlap, sichart, sirare, sistats, sitimechart

282

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sitop command.

 sort

 Synopsis

Sorts search results by the specified fields.

 Syntax

sort [<count>] (<sort-by-clause>)+ [desc]

 Required arguments

<count>
Syntax: <int>
Description: Specify the number of results to sort. If no count is specified,
the default limit of 10000 is used. If "0" is specified, all results will be
returned.

<sort-by-clause>
Syntax: (- | +) <sort-field>
Description: List of fields to sort by and their order, descending (-) or
ascending (+).

 Optional arguments

desc
Syntax: d | desc
Description: A trailing string that reverses the results.

 Sort field options

<sort-field>
Syntax: <field> | auto(<field>) | str(<field>) | ip(<field>) | num(<field>)
Description: Options for sort-field.

<field>

283

Syntax: <string>
Description: The name of field to sort.

auto
Syntax: auto(<field>)
Description: Determine automatically how to sort the field's values.

ip
Syntax: ip(<field>)
Description: Interpret the field's values as an IP address.

num
Syntax: num(<field>)
Description: Treat the field's values as numbers.

str
Syntax: str(<field>)
Description: Order the field's values lexigraphically.

 Description

The sort command sorts the results by the given list of fields. Results missing a
given field are treated as having the smallest or largest possible value of that
field if the order is descending or ascending, respectively.

If the first argument to the sort command is a number, then at most that many
results are returned (in order). If no number is specified, the default limit of 10000
is used. If the number 0 is specified, all results will be returned.

By default, sort tries to automatically determine what it is sorting. If the field
takes on numeric values, the collating sequence is numeric. If the field takes on
IP address values, the collating sequence is for IPs. Otherwise, the collating
sequence is lexicographic ordering. Some specific examples are:

Alphabetic strings are sorted lexicographically.•
Punctuation strings are sorted lexicographically.•
Numeric data is sorted as you would expect for numbers and the sort
order is specified (ascending or descending).

•

Alphanumeric strings are sorted based on the data type of the first
character. If it starts with a number, it's sorted numerically based on that
number alone; otherwise, it's sorted lexicographically.

•

Strings that are a combination of alphanumeric and punctuation
characters are sorted the same way as alphanumeric strings.

•

284

In the default automatic mode for a field, the sort order is determined between
each pair of values that are compared at any one time. This means that for some
pairs of values, the order may be lexicographical, while for other pairs the order
may be numerical. For example, if sorting in descending order: 10.1 > 9.1, but
10.1.a < 9.1.a.

 Examples

Example 1: Sort results by "ip" value in ascending order and then by "url" value
in descending order.

... | sort ip, -url

Example 2: Sort first 100 results in descending order of the "size" field and then
by the "source" value in ascending order.

... | sort 100 -size, +source

Example 3: Sort results by the "_time" field in ascending order and then by the
"host" value in descending order.

... | sort _time, -host

Example 4: Change the format of the event's time and sort the results in
descending order by new time.

... | bucket _time span=60m | eval Time=strftime(_time,
"%m/%d %H:%M %Z") | stats avg(time_taken) AS AverageResponseTime BY

Time | sort - Time

(Thanks to Ayn for this example.)

Example 5. Sort a table of results in a specific order, such as days of the week
or months of the year, that is not lexicographical or numeric. For example, you
have a search that produces the following table:

Day Total
Friday 120

Monday 93

Tuesday 124

Thursday 356

Weekend 1022

Wednesday 248

Sorting on the day field (Day) returns a table sorted alphabetically, which doesn't
make much sense. Instead, you want to sort the table by the day of the week,

285

Monday to Friday. To do this, you first need to create a field (sort_field) that
defines the order. Then you can sort on this field.

... | eval wd=lower(Day) | eval sort_field=case(wd=="monday",1,
wd=="tuesday",2, wd=="wednesday",3, wd=="thursday",4, wd=="friday",5,

wd=="weekend",6) | sort sort_field | fields - sort_field

This search uses the eval command to create the sort_field and the fields
command to remove sort_field from the final results table.

(Thanks to Ant1D and Ziegfried for this example.)

 See also

reverse

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the sort command.

 spath

The spath command--the "s" stands for Splunk (or structured) -- provides a
straightforward means for extracting information from structured data formats,
XML and JSON. It also highlights the syntax in the displayed events list.

You can also use the eval command's spath() function. For more information,
see the Functions for eval and where.

 Synopsis

Extracts values from structured data (XML or JSON) and stores them in a field or
fields.

 Syntax

spath [input=<field>] [output=<field>] [path=<datapath> | <datapath>]

286

 Optional arguments

input
Syntax: input=<field>
Description: The field to read in and extract values. Defaults to _raw.

output
Syntax: output=<field>
Description: If specified, the value extracted from the path is written to
this field name.

path
Syntax: path=<datapath> | <datapath>
Description: The location path to the value that you want to extract. If you
don't use the path argument, the first unlabeled argument will be used as
a path. A location path is composed of one or more location steps,
separated by periods; for example 'foo.bar.baz'. A location step is
composed of a field name and an optional index surrounded by curly
brackets. The index can be an integer, to refer to the data's position in an
array (this will differ between JSON and XML), or a string, to refer to an
XML attribute. If the index refers to an XML attribute, specify the attribute
name with an @ symbol. If you don't specify an output argument, this path
becomes the field name for the extracted value.

 Description

When called with no path argument, spath runs in "auto-extract" mode, where it
finds and extracts all the fields from the first 5000 characters in the input field
(which defaults to _raw if another input source isn't specified). If a path is
provided, the value of this path is extracted to a field named by the path or to a
field specified by the output argument (if it is provided).

A location path contains one or more location steps, each of which has a
context that is specified by the location steps that precede it. The context for
the top-level location step is implicitly the top-level node of the entire XML or
JSON document.

The location step is composed of a field name and an optional array index
indicated by curly brackets around an integer or a string. Array indices mean
different things in XML and JSON. For example, in JSON, foo.bar{3} refers to
the third element of the bar child of the foo element. In XML, this same path
refers to the third bar child of foo.

287

The spath command lets you use wildcards to take the place of an array
index in JSON. Now, you can use the location path entities.hashtags{}.text
to get the text for all of the hashtags, as opposed to specifying
entities.hashtags{0}.text, entities.hashtags{1}.text, etc. The referenced
path, here entities.hashtags has to refer to an array for this to make sense
(otherwise you get an error, just like with regular array indices).

This also works with XML; for example, catalog.book and catalog.book{} are
equivalent (both will get you all the books in the catalog).

 Examples

Example 1: GitHub

As an administrator of a number of large git repositories, I want to:

see who has committed the most changes and to which repository•
produce a list of the commits submitted for each user•

I set up Splunk to track all the post-commit JSON information, then use spath to
extract fields that I call repository, commit_author, and commit_id:

... | spath output=repository path=repository.url

... | spath output=commit_author path=commits.author.name

... | spath output=commit_id path=commits.id

Now, if I want to see who has committed the most changes to a repository, I can
run the search:

... | top commit_author by repository

and, to see the list of commits by each user:

... | stats values(commit_id) by commit_author

Example 2: Extract a subset of an attribute

This example shows how to extract values from XML attributes and elements.

<vendorProductSet vendorID="2">
 <product productID="17" units="mm" >
 <prodName nameGroup="custom">
 <locName locale="all">APLI 01209</locName>
 </prodName>
 <desc descGroup="custom">
 <locDesc locale="es">Precios</locDesc>

288

 <locDesc locale="fr">Prix</locDesc>
 <locDesc locale="de">Preise</locDesc>
 <locDesc locale="ca">Preus</locDesc>
 <locDesc locale="pt">Preços</locDesc>
 </desc>
 </product>

To extract the values of the locDesc elements (Precios, Prix, Preise, etc.), use:

... | spath output=locDesc path=vendorProductSet.product.desc.locDesc

To extract the value of the locale attribute (es, fr, de, etc.), use:

... | spath output=locDesc.locale

path=vendorProductSet.product.desc.locDesc{@locale}

To extract the attribute of the 4th locDesc (ca), use:

... | spath path=vendorProductSet.product.desc.locDesc{4}{@locale}

Example 3: Extract and expand JSON events with multvalued fields

The mvexpand command only works on one multivalued field. This example
walks through how to expand a JSON event with more than one multivalued field
into individual events for each fields's values. For example, given this event, with
sourcetype=json:

{"widget": {
 "text": {
 "data": "Click here",
 "size": 36,
 "data": "Learn more",
 "size": 37,
 "data": "Help",
 "size": 38,
}}

First, start with a search to extract the fields from the JSON and rename them in
a table:

sourcetype=json | spath | rename widget.text.size AS size,

widget.text.data AS data | table _time,size,data

 _time size data
--------------------------- ---- -----------
2012-10-18 14:45:46.000 BST 36 Click here
 37 Learn more
 38 Help

289

Then, use the eval function, mvzip(), to create a new multivalued field named x,
with the values of the size and data:

sourcetype=json | spath | rename widget.text.size AS size,
widget.text.data AS data | eval x=mvzip(data,size) | table

_time,data,size,x

 _time data size x
--------------------------- ----------- ----- --------------
2012-10-18 14:45:46.000 BST Click here 36 Click here,36
 Learn more 37 Learn more,37
 Help 38 Help,38

Now, use the mvexpand command to create individual events based on x and
the eval function mvindex() to redefine the values for data and size.

sourcetype=json | spath | rename widget.text.size AS size,
widget.text.data AS data | eval x=mvzip(data,size)| mvexpand x | eval x
= split(x,",") | eval data=mvindex(x,0) | eval size=mvindex(x,1) |

table _time,data, size

 _time data size
--------------------------- ---------- ----
2012-10-18 14:45:46.000 BST Click here 36
2012-10-18 14:45:46.000 BST Learn more 37
2012-10-18 14:45:46.000 BST Help 38

(Thanks to Genti for this example.)

 More examples

Example 1:

... | spath output=myfield path=foo.bar

... | spath output=myfield path=foo{1}

... | spath output=myfield path=foo.bar{7}.baz

Example 2:

... | spath output=author path=book{@author}

 See also

extract, kvform, multikv, regex, rex, xmlkv, xpath

290

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the spath command.

 stats

 Synopsis

Provides statistics, grouped optionally by field.

 Syntax

Simple: stats (stats-function(field) [as field])+ [by field-list]

Complete: stats [allnum=<bool>] [delim=<string>] (<stats-agg-term> |
<sparkline-agg-term>) [<by clause>]

 Required arguments

stats-agg-term
Syntax: <stats-func>(<evaled-field> | <wc-field>) [AS <wc-field>]
Description: A statistical specifier optionally renamed to a new field
name. The specifier can be by an aggregation function applied to a field or
set of fields or an aggregation function applied to an arbitrary eval
expression.

sparkline-agg-term
Syntax: <sparkline-agg> [AS <wc-field>]
Description: A sparkline specifier optionall renamed to a new field.

 Optional arguments

allnum
syntax: allnum=<bool>
Description: If true, computes numerical statistics on each field if and
only if all of the values of that field are numerical. (default is false.)

delim
Syntax: delim=<string>

291

Description: Used to specify how the values in the list() or values()
aggregation are delimited. (default is a single space.)

by clause
Syntax: by <field-list>
Description: The name of one or more fields to group by.

 Stats function options

stats-function
Syntax: avg() | c() | count() | dc() | distinct_count() | earliest() | estdc() |
estdc_error() | exactperc<int>() | first() | last() | latest() | list() | max() |
median() | min() | mode() | p<in>() | perc<int>() | range() | stdev() | stdevp()
| sum() | sumsq() | upperperc<int>() | values() | var() | varp()
Description: Functions used with the stats command. Each time you
invoke the stats command, you can use more than one function;
however, you can only use one by clause. For a list of stats functions with
descriptions and examples, see "Functions for stats, chart, and timechart".

 Sparkline function options

Sparklines are inline charts that appear within table cells in search results to
display time-based trends associated with the primary key of each row. Read
more about how to "Add sparklines to your search results" in the Search Manual.

sparkline-agg
Syntax: sparkline (count(<wc-field>), <span-length>) | sparkline
(<sparkline-func>(<wc-field>), <span-length>)
Description: A sparkline specifier, which takes the first argument of a
aggregation function on a field and an optional timespan specifier. If no
timespan specifier is used, an appropriate timespan is chosen based on
the time range of the search. If the sparkline is not scoped to a field, only
the count aggregator is permitted.

sparkline-func
Syntax: c() | count() | dc() | mean() | avg() | stdev() | stdevp() | var() |
varp() | sum() | sumsq() | min() | max() | range()
Description: Aggregation function to use to generate sparkline values.
Each sparkline value is produced by applying this aggregation to the
events that fall into each particular time bucket.

292

 Description

Calculate aggregate statistics over the dataset, similar to SQL aggregation. If
called without a by clause, one row is produced, which represents the
aggregation over the entire incoming result set. If called with a by-clause, one
row is produced for each distinct value of the by-clause.

 Examples

 Example 1

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from Get the sample data into Splunk
and follow the instructions. Then, run this search using the time range, Other >
Yesterday.
Count the number of different types of requests made against each Web server.

sourcetype=access_* | stats count(eval(method="GET")) AS GET,

count(eval(method="POST")) AS POST by host

This example uses eval expressions to specify field values for the stats
command to count. The search is only interested in two page request methods,
GET or POST. The first clause tells Splunk to count the Web access events that
contain the method=GET field value and call the result "GET". The second clause
does the same for method=POST events. Then the by clause, by host, separates
the counts for each request by the host value that they correspond to.

This returns the following table:

Note: You can use the stats, chart, and timechart commands to perform the
same statistical calculations on your data. The stats command returns a table of
results. The chart command returns the same table of results, but you can use
the Report Builder to format this table as a chart. If you want to chart your results
over a time range, use the timechart command. You can also see variations of
this example with the chart and timechart commands.

293

 Example 2

This example uses recent (September 23-29, 2010) earthquake data downloaded from the
USGS Earthquakes website. The data is a comma separated ASCII text file that contains the
source network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of
reporting stations (NST) for each earthquake over the last 7 days.

Download the text file, M 1+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically.
Search for earthquakes in and around California and count the number of quakes
that were recorded. Then, calculate the minimum, maximum, the range
(difference between the min and max), and average magnitudes of those recent
quakes.

source=eqs7day-M1.csv Region=*California | stats count, max(Magnitude),

min(Magnitude), range(Magnitude), avg(Magnitude) by Region

Use stats functions for each of these calculations: count(), max(), min(),
range(), and avg(). This returns the following table:

There were 870 events for this data set. From these results, you can see that
approximately 350 of those recorded earthquakes occurred in and around
California--!!!

 Example 3

This example uses recent (September 23-29, 2010) earthquake data downloaded from the
USGS Earthquakes website. The data is a comma separated ASCII text file that contains the
source network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of
reporting stations (NST) for each earthquake over the last 7 days.

Download the text file, M 1+ earthquakes, past 7 days, and upload it to
Splunk. Splunk should extract the fields automatically.

294

Search for earthquakes in and around California and calculate the mean,
standard deviation, and variance of the magnitudes of those recent quakes.

source=eqs7day-M1.csv Region=*California | stats mean(Magnitude),

stdev(Magnitude), var(Magnitude) by Region

Use stats functions for each of these calculations: mean(), stdev(), and var().
This returns the following table:

The mean values should be exactly the same as the values calculated using avg()
in Example 2.

 Example 4

This example uses the sample dataset from the tutorial and a field lookup to add more
information to the event data.

Download the data set from Add data tutorial and follow the instructions
to get the sample data into Splunk.

•

Download the CSV file from Use field lookups tutorial and follow the
instructions to set up your field lookup.

•

The original data set includes a product_id field that is the catalog number for
the items sold at the Flower & Gift shop. The field lookup adds three new fields
to your events: product_name, which is a descriptive name for the item;
product_type, which is a category for the item; and price, which is the cost of
the item.

After you configure the field lookup, you can run this search using the time
range, All time.

295

Create a table that displays the items sold at the Flower & Gift shop by their ID,
type, and name. Also, calculate the revenue for each product.

sourcetype=access_* action=purchase | stats values(product_type) AS
Type, values(product_name) AS Name, sum(price) AS "Revenue" by
product_id | rename product_id AS "Product ID" | eval Revenue="$

".tostring(Revenue,"commas")

This example uses the values() function to display the corresponding
product_type and product_name values for each product_id. Then, it uses the
sum() function to calculate a running total of the values of the price field.

Also, this example renames the various fields, for better display. For the stats
functions, the renames are done inline with an "AS" clause. The rename
command is used to change the name of the product_id field, since the syntax
does not let you rename a split-by field.

Finally, the results are piped into an eval expression to reformat the Revenue field
values so that they read as currency, with a dollar sign and commas.

This returns the following table:

It looks like the top 3 purchases over the course of the week were the Beloved's
Embrace Bouquet, the Tea & Spa Gift Set, and the Fragrant Jasmine Plant.

 Example 5

This example uses generated email data (sourcetype=cisco_esa). You should be able
to run this example on any email data by replacing the sourcetype=cisco_esa
with your data's sourcetype value and the mailfrom field with your data's email
address field name (for example, it might be To, From, or Cc).

296

Find out how much of your organization's email comes from com/net/org or other
top level domains.

sourcetype="cisco_esa" mailfrom=* | eval
accountname=split(mailfrom,"@") | eval
from_domain=mvindex(accountname,-1) | stats
count(eval(match(from_domain, "[^\n\r\s]+\.com"))) AS ".com",
count(eval(match(from_domain, "[^\n\r\s]+\.net"))) AS ".net",
count(eval(match(from_domain, "[^\n\r\s]+\.org"))) AS ".org",
count(eval(NOT match(from_domain, "[^\n\r\s]+\.(com|net|org)"))) AS

"other"

The first half of this search uses eval to break up the email address in the
mailfrom field and define the from_domain as the portion of the mailfrom field
after the @ symbol.

The results are then piped into the stats command. The count() function is used
to count the results of the eval expression. Here, eval uses the match() function
to compare the from_domain to a regular expression that looks for the different
suffixes in the domain. If the value of from_domain matches the regular
expression, the count is updated for each suffix, .com, .net, and .org. Other
domain suffixes are counted as other.

This produces the following results table:

 Example 6

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from this topic in the tutorial and
follow the instructions to upload it to Splunk. Then, run this search using the
time range, Other > Yesterday.
Search Web access logs, and return the total number of hits from the top 10
referring domains. (The "top" command returns a count and percent value for
each referer.)

sourcetype=access_* | top limit=10 referer | stats sum(count) AS total

This search uses the top command to find the ten most common referer

297

domains, which are values of the referer field. (You might also see this as
referer_domain.) The results of top are then piped into the stats command. This
example uses the sum() function to add the number of times each referer
accesses the website. This summation is then saved into a field, total. This
produces the single numeric value:

 More examples

Example 1: Search the access logs, and return the total number of hits from the
top 100 values of "referer_domain". (The "top" command returns a count and
percent value for each "referer_domain".)

sourcetype=access_combined | top limit=100 referer_domain | stats

sum(count) AS total

Example 2: Return the average for each hour, of any unique field that ends with
the string "lay" (for example, delay, xdelay, relay, etc).

... | stats avg(*lay) BY date_hour

Example 3: Remove duplicates of results with the same "host" value and return
the total count of the remaining results.

... | stats dc(host)

Example 4: Return the average transfer rate for each host.

sourcetype=access* | stats avg(kbps) by host

 See also

eventstats, rare, sistats, streamstats, top

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the stats command.

298

 strcat

 Synopsis

Concatenates string values.

 Syntax

strcat [allrequired=<bool>] <srcfields>* <destfield>

 Required arguments

<destfield>
Syntax: <string>
Description: A destination field to save the concatenated string values
defined by srcfields. The destfield is always at the end of the series of
srcfields.

<srcfields>
Syntax: (<field>|<quoted-str>)
Description: Specify either key names or quoted literals.

quoted-str
Syntax: "<string>"
Description: Quoted literals.

 Optional arguments

allrequired
Syntax: allrequired=<bool>
Description: Specifies whether or not all source fields need to exist in
each event before values are written to the destination field. By default,
allrequired=f, meaning that the destination field is always written and
source fields that do not exist are treated as empty strings. If allrequired=t,
the values are written to destination field only if all source fields exist.

 Description

Stitch together fields and/or strings to create a new field. Quoted tokens are
assumed to be literals and the rest field names. The destination field name is
always at the end.

299

 Examples

Example 1: Add the field, comboIP, which combines the source and destination
IP addresses and separates them with a front slash character.

... | strcat sourceIP "/" destIP comboIP

Example 2: Add the field, comboIP, and then create a chart of the number of
occurrences of the field values.

host="mailserver" | strcat sourceIP "/" destIP comboIP | chart count by

comboIP

Example 3: Add a field, address, which combines the host and port values into
the format <host>::<port>.

... | strcat host "::" port address

 See also

eval

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the strcat command.

 streamstats

The streamstats command, similar to the stats command, calculates summary
statistics on search results. Unlike, stats (which works on the results as a
whole), streamstats calculates statistics for each event at the time the event is
seen.

 Synopsis

Adds summary statistics to all search results in a streaming manner.

 Syntax

streamstats [current=<bool>] [window=<int>] [global=<bool>] [allnum=<bool>]
<stats-agg-term>* [<by clause>]

300

 Required arguments

stats-agg-term
Syntax: <stats-func>(<evaled-field> | <wc-field>) [AS <wc-field>]
Description: A statistical specifier optionally renamed to a new field
name. The specifier can be by an aggregation function applied to a field or
set of fields or an aggregation function applied to an arbitrary eval
expression.

 Optional arguments

current
Syntax: current=<bool>
Description: If true, tells Splunk to include the given, or current, event in
the summary calculations. Defaults to true.

window
Syntax: window=<int>
Description: The 'window' option specify window size to be used in
computing the statistics. Defaults to 0, which means that all previous (plus
current) events are used.

global
Syntax: global=<bool>
Description: If the 'global' option is set to false and 'window' is set to a
non-zero value, a separate window is used for each group of values of the
group by fields. Defaults to true.

allnum
Syntax: allnum=<bool>
Description: If true, computes numerical statistics on each field if and
only if all of the values of that field are numerical. Defaults to false.

by clause
Syntax: by <field-list>
Description: The name of one or more fields to group by.

 Stats functions options

stats-function
Syntax: avg() | c() | count() | dc() | distinct_count() | first() | last() | list() |
max() | median() | min() | mode() | p<in>() | perc<int>() | per_day() |
per_hour() | per_minute() | per_second() | range() | stdev() | stdevp() |

301

sum() | sumsq() | values() | var() | varp()
Description: Functions used with the stats command. Each time you
invoke the stats command, you can use more than one function;
however, you can only use one by clause. For a list of stats functions with
descriptions and examples, see "Functions for stats, chart, and
timechart".

 Description

The streamstats command is similar to the eventstats command except that it
uses events before a given event to compute the aggregate statistics applied to
each event. If you want to include the given event in the stats calculations, use
current=true (which is the default).

 Example 1

Each day you track unique users, and you'd like to track the cumulative count of
distinct users. This is example calculates the running total of distinct users over
time.

eventtype="download" | bin _time span=1d as day | stats
values(clientip) as ips dc(clientip) by day | streamstats dc(ips) as

"Cumulative total"

The bin command breaks the time into days. The stats command calculates the
distinct users (clientip) and user count per day. The streamstats command find
the running distinct count of users.

This search returns a table that includes: day, ips, dc(clientip), and Cumulative
total.

 Example 2

This example uses streamstats to produce hourly cumulative totals for category
values.

... | timechart span=1h sum(value) as total by category | streamstats

global=f sum(total) as accu_total

The timechart command buckets the events into spans of 1 hour and counts the
total values for each category. The timechart command will also fill NULL
values, so that there are no missing values. Then, the streamstats command is
used to calculate the accumulated total.

302

 More examples

Example 1: Compute the average value of foo for each value of bar including
only the only 5 events with that value of bar.

... | streamstats avg(foo) by bar window=5 global=f

Example 2: For each event, compute the average of field foo over the last 5
events (including the current event). Similar to doing trendline sma5(foo)

... | streamstats avg(foo) window=5

Example 3: This example adds to each event a count field that represents the
number of events seen so far (including that event). For example, it adds 1 for
the first event, 2 for the second event, etc.

... | streamstats count

If you didn't want to include the current event, you would specify:

... | streamstats count current=f

 See also

accum, autoregress, delta, fillnull, eventstats, stats, streamstats, trendline

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the streamstats command.

 table

The table command is similar to the fields command in that it enables you to
specify the fields you want to keep in your results. Use table command when
you want to retain data purely as a table.

The table command can be used to build a scatter plot to show trends in the
relationships between discrete values of your data. Otherwise, you should not
use it for charts (such as chart or timechart) because the UI requires the
internal fields (which are the fields beginning with an underscore, _*) to render
the charts, and the table command strips these fields out of the results by
default. Instead, you should use the fields command because it always retains
all the internal fields.

303

 Synopsis

Creates a table using only the field names specified.

 Syntax

table <wc-field-list>

 Arguments

<wc-field-list>
Syntax: <wc-field> <wc-field> ...
Description: A list of field names, can include wildcards.

 Description

The table command returns a table formed by only the fields specified in the
arguments. Columns are displayed in the same order that fields are specified.
Column headers are the field names. Rows are the field values. Each row
represents an event.

The table command doesn't let you rename fields, only specify the fields that
you want to show in your tabulated results. If you're going to rename a field, do it
before piping the results to table.

 Examples

 Example 1

This example uses recent (October 11-18, 2010) earthquake data downloaded from the USGS
Earthquakes website. The data is a comma separated ASCII text file that contains the source
network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of reporting
stations (NST) for each earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below.
Search for recent earthquakes in and around California and display only the time
of the quake (Datetime), where it occurred (Region), and the quake's magnitude
(Magnitude) and depth (Depth).

304

source="eqs7day-M1.csv" Region=*California | table Datetime, Region,

Magnitude, Depth

This simply reformats your events into a table and displays only the fields that
you specified as arguments.

 Example 2

This example uses recent (October 11-18, 2010) earthquake data downloaded from the USGS
Earthquakes website. The data is a comma separated ASCII text file that contains the source
network (Src), ID (Eqid), version, date, location, magnitude, depth (km) and number of reporting
stations (NST) for each earthquake over the last 7 days.

Download the text file, M 2.5+ earthquakes, past 7 days, save it as a CSV file,
and upload it to Splunk. Splunk should extract the fields automatically. Note that
you'll be seeing data from the 7 days previous to your download, so your results
will vary from the ones displayed below.
Show the date, time, coordinates, and magnitude of each recent earthquake in
Northern California.

source="eqs7day-M1.csv" Region="Northern California" | rename Lat AS

Latitude, Lon AS Longitude | table Datetime, L*, Magnitude

This example begins with a search for all recent earthquakes in Northern
California (Region="Northern California").

Then it pipes these events into the rename command to change the names of the
coordinate fields, from Lat and Lon to Latitude and Longitude. (The table
command doesn't let you rename or reformat fields, only specify the fields that
you want to show in your tabulated results.)

305

Finally, it pipes the results into the table command and specifies both coordinate
fields with L*, the magnitude with Magnitude, and the date and time with
Datetime.

This example just illustrates how the table command syntax allows you to
specify multiple fields using the asterisk wildcard.

 Example 3

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from the Add data tutorial and follow
the instructions to get the sample data into Splunk. Then, run this search using
the time range, All time.
Search for IP addresses and classify the network they belong to.

sourcetype=access_* | dedup clientip | eval
network=if(cidrmatch("192.0.0.0/16", clientip), "local", "other") |

table clientip, network

This example searches for Web access data and uses the dedup command to
remove duplicate values of the IP addresses (clientip) that access the server.
These results are piped into the eval command, which uses the cidrmatch()
function to compare the IP addresses to a subnet range (192.0.0.0/16). This
search also uses the if() function, which says that if the value of clientip falls
in the subnet range, then network is given the value local. Otherwise,
network=other.

The results are then piped into the table command to show only the distinct IP
addresses (clientip) and the network classification (network):

306

 More examples

Example 1: Create a table for fields foo, bar, then all fields that start with 'baz'.

... | table foo bar baz*

 See Also

fields

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the table command.

 tags

 Synopsis

Annotates specified fields in your search results with tags.

 Syntax

tags [outputfield=<field>] [inclname=<bool>] [inclvalue=<bool>] <field-list>

 Required arguments

<field-list>
Syntax: <field> <field> ...
Description: Specify the fields to annotate with tags.

307

 Optional arguments

outputfield
Syntax: outputfield=<field>
Description: If specified, the tags for all fields will be written to this field.
Otherwise, the tags for each field will be written to a field named
tag::<field>.

inclname
Syntax: inclname=T|F
Description: If outputfield is specified, controls whether or not the field
name is added to the output field. Defaults to F.

inclvalue
Syntax: inclvalue=T|F
Description: If outputfield is specified, controls whether or not the field
value is added to the output field. Defaults to F.

 Description

Annotate the search results with tags. If there are fields specified only annotate
tags for those fields otherwise look for tags for all fields. If outputfield is specified,
the tags for all fields will be written to this field. If outputfield is specified,
inclname and inclvalue control whether or not the field name and field values are
added to the output field. By default only the tag itself is written to the outputfield,
that is (<field>::)?(<value>::)?tag .

 Examples

Example 1: Write tags for host and eventtype fields into tag::host and
tag::eventtype.

... | tags host eventtype

Example 2: Write new field test that contains tags for all fields.

... | tags outputfield=test

Example 3: Write tags for host and sourcetype into field test in the format
host::<tag> or sourcetype::<tag>.

... | tags outputfield=test inclname=t host sourcetype

308

 See also

eval

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the tags command.

 tail

 Synopsis

Returns the last n number of specified results.

 Syntax

tail [<N>]

 Required arguments

<N>
Syntax: <int>
Description: The number of results to return, default is 10 if none is
specified.

 Description

Returns the last n results, or 10 if no integer is specified. The events are returned
in reverse order, starting at the end of the result set.

 Examples

Example 1: Return the last 20 results (in reverse order).

... | tail 20

 See also

head, reverse

309

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the tail command.

 timechart

 Synopsis

Creates a time series chart with corresponding table of statistics.

 Syntax

timechart [sep=<string>] [partial=<bool>] [cont=<t|f>] [limit=<int>]
[agg=<stats-agg-term>] [<bucketing-option>]* (<single-agg> [by
<split-by-clause>]) | ((<eval-expression>) by <split-by-clause>)

 Required arguments

agg
Syntax: <stats-agg-term>
Description: See the Stats functions section below. For a list of stats
functions with descriptions and examples, see "Functions for stats, chart,
and timechart".

bucketing option
Syntax: bins | minspan | span | <start-end>
Description: Discretization options. If a bucketing option is not supplied,
timechart defaults to bins=100. bins sets the maximum number of bins,
not the target number of bins.

eval-expression
Syntax: <math-exp> | <concat-exp> | <compare-exp> | bool-exp> |
<function-call>
Description: A combination of literals, fields, operators, and functions that
represent the value of your destination field. The following are the basic
operations you can perform with eval. For these evaluations to work, your
values need to be valid for the type of operation. For example, with the
exception of addition, arithmetic operations may not produce valid results
if the values are not numerical. Additionally, Splunk can concatenate the
two operands if they are both strings. When concatenating values with '.',

310

Splunk treats both values as strings regardless of their actual type.

single-agg
Syntax: count|<stats-func>(<field>)
Description: A single aggregation applied to a single field (can be evaled
field). No wildcards are allowed. The field must be specified, except when
using the special 'count' aggregator that applies to events as a whole.

split-by-clause
Syntax: <field> (<tc-option>)* [<where-clause>]
Description: Specifies a field to split by. If field is numerical, default
discretization is applied; discretization is defined with tc-option.

 Optional arguments

cont
Syntax: cont=<bool>
Description: Specifies whether the chart is continuous or not. If true,
Splunk fills in the time gaps. Defaults is True|T.

fixedrange
Syntax: fixedrange=<bool>
Description: (Not valid for 4.2) Specify whether or not to enforce the
earliest and latest times of the search. Setting it to false allows the
timechart to constrict to just the time range with valid data. Default is
True|T.

limit
Syntax: limit=<int>
Description: Specify a limit for series filtering; limit=0 means no filtering.
By default, setting limit=N would filter the top N values based on the sum
of each series.

partial
Syntax: partial=<bool>
Description: Controls if partial time buckets should be retained or not.
Only the first and last bucket could ever be partial. Defaults to True|T,
meaning that they are retained.

sep
Syntax: sep=<string>
Description: Specifies the separator to use for output fieldnames when
multiple data series are specified along with a split-by field.

311

 Stats functions

stats-agg-term
Syntax: <stats-func>(<evaled-field> | <wc-field>) [AS <wc-field>]
Description: A statistical specifier optionally renamed to a new field
name. The specifier can be by an aggregation function applied to a field or
set of fields or an aggregation function applied to an arbitrary eval
expression.

stats-function
Syntax: avg() | c() | count() | dc() | distinct_count() | earliest() | estdc() |
estdc_error() | exactperc<int>() | first() | last() | latest() | list() | max() |
median() | min() | mode() | p<in>() | perc<int>() | per_day() | per_hour() |
per_minute() | per_second() |range() | stdev() | stdevp() | sum() | sumsq() |
upperperc<int>() | values() | var() | varp()
Description: Functions used with the stats command. Each time you
invoke the stats command, you can use more than one function;
however, you can only use one by clause. For a list of stats functions with
descriptions and examples, see "Functions for stats, chart, and timechart".

 Bucketing options

bins
Syntax: bins=<int>
Description: Sets the maximum number of bins to discretize into. This
does not set the target number of bins. (It finds the smallest bucket size
that results in no more than 100 distinct buckets. Even though you specify
100 or 300, the resulting number of buckets might be much lower.)
Defaults to 100.

minspan
Syntax: minspan=<span-length>
Description: Specifies the smallest span granularity to use automatically
inferring span from the data time range.

span
Syntax: span=<log-span> | span=<span-length>
Description: Sets the size of each bucket, using a span length based on
time or log-based span.

<start-end>
Syntax: end=<num> | start=<num>

312

Description:Sets the minimum and maximum extents for numerical
buckets. Data outside of the [start, end] range is discarded.

 Log span syntax

<log-span>
Syntax: [<num>]log[<num>]
Description: Sets to log-based span. The first number is a coefficient.
The second number is the base. If the first number is supplied, it must be
a real number >= 1.0 and < base. Base, if supplied, must be real number
> 1.0 (strictly greater than 1).

 Span length syntax

span-length
Syntax: [<timescale>]
Description: A span length based on time.

Syntax: <int>
Description: The span of each bin. If using a timescale, this is used as a
time range. If not, this is an absolute bucket "length."

<timescale>
Syntax: <sec> | <min> | <hr> | <day> | <month> | <subseconds>
Description: Time scale units.

<sec>
Syntax: s | sec | secs | second | seconds
Description: Time scale in seconds.

<min>
Syntax: m | min | mins | minute | minutes
Description: Time scale in minutes.

<hr>
Syntax: h | hr | hrs | hour | hours
Description: Time scale in hours.

<day>
Syntax: d | day | days
Description: Time scale in days.

313

<month>
Syntax: mon | month | months
Description: Time scale in months.

<subseconds>
Syntax: us | ms | cs | ds
Description: Time scale in microseconds (us), milliseconds (ms),
centiseconds (cs), or deciseconds (ds).

 tc options

tc-option
Syntax: <bucketing-option> | usenull=<bool> | useother=<bool> |
nullstr=<string> | otherstr=<string>
Description: Options for controlling the behavior of splitting by a field.

usenull
Syntax: usenull=<bool>
Description: Controls whether or not a series is created for events that do
not contain the split-by field.

nullstr
Syntax: nullstr=<string>
Description: If usenull is true, this series is labeled by the value of the
nullstr option. Defaults to NULL.

useother
Syntax: useother=<bool>
Description: Specifies if a series should be added for data series not
included in the graph because they did not meet the criteria of the
<where-clause>. Defaults to True|T.

otherstr
Syntax: otherstr=<string>
Description: If useother is true, this series is labeled by the value of the
otherstr option. Defaults to OTHER.

 where clause

where clause
Syntax: <single-agg> <where-comp>
Description: Specifies the criteria for including particular data series
when a field is given in the tc-by-clause. The most common use of this

314

option is to select for spikes rather than overall mass of distribution in
series selection. The default value finds the top ten series by area under
the curve. Alternately one could replace sum with max to find the series
with the ten highest spikes.This has no relation to the where command.

<where-comp>
Syntax: <wherein-comp> | <wherethresh-comp>
Description: A criteria for the where clause.

<wherein-comp>
Syntax: (in|notin) (top|bottom)<int>
Description: A where-clause criteria that requires the aggregated series
value be in or not in some top or bottom grouping.

<wherethresh-comp>
Syntax: (<|>)()?<num>
Description: A where-clause criteria that requires the aggregated series
value be greater than or less than some numeric threshold.

 Description

Create a chart for a statistical aggregation applied to a field against time as the
x-axis. Data is optionally split by a field so that each distinct value of this split-by
field is a series. If you use an eval expression, the split-by clause is required. The
limit and agg options enables you to specify series filtering but are ignored if an
explicit where-clause is provided (limit=0 means no series filtering).

 Bucket time spans versus per_* functions

The functions, per_day(), per_hour(), per_minute(), and per_second() are
aggregator functions and are not responsible for setting a time span for the
resultant chart. These functions are used to get a consistent scale for the data
when an explicit span is not provided. The resulting span can depend on the
search time range.

For example, per_hour() converts the field value so that it is a rate per hour, or
sum()/<hours in the span>. If your chart span ends up being 30m, it is sum()*2.

If you want the span to be 1h, you still have to specify the argument span=1h in
your search.

Note: You can do per_hour() on one field and per_minute() (or any combination
of the functions) on a different field in the same search.

315

 A note about split-by fields

If you use chart or timechart, you cannot use a field that you specify in a
function as your split-by field as well. For example, you will not be able to run:

... | chart sum(A) by A span=log2

However, you can work around this with an eval expression, for example:

... | eval A1=A | chart sum(A) by A1 span=log2

 Examples

 Example 1

This example uses the sample dataset from the tutorial and a field lookup to add more
information to the event data.

Download the data set from this topic in the tutorial and follow the
instructions to upload it to Splunk.

•

Download the CSV file from this topic in the tutorial and follow the
instructions to set up your field lookup.

•

The original data set includes a product_id field that is the catalog number for
the items sold at the Flower & Gift shop. The field lookup adds three new fields
to your events: product_name, which is a descriptive name for the item;
product_type, which is a category for the item; and price, which is the cost of
the item.

After you configure the field lookup, you can run this search using the time
range, Other > Yesterday.
Chart revenue for the different product that were purchased yesterday.

sourcetype=access_* action=purchase | timechart per_hour(price) by

product_name usenull=f

This example searches for all purchase events (defined by the action=purchase)
and pipes those results into the timechart command. The per_hour() function
sums up the values of the price field for each item (product_name) and buckets
the total for each hour of the day.

This produces the following table of results:

316

Click Show report to format the chart in Report Builder. Here, it's formatted as a
stacked column chart over time:

After you create this chart, you can mouseover each section to view more
metrics for the product purchased at that hour of the day. Notice that the chart
does not display the data in hourly spans. Because a span is not provided (such
as span=1hr), the per_hour() function converts the value so that it is a sum per
hours in the time range (which in this cause is 24 hours).

 Example 2

This example uses the sample dataset from the tutorial and a field lookup to add more
information to the event data.

Download the data set from this topic in the tutorial and follow the
instructions to upload it to Splunk.

•

Download the CSV file from this topic in the tutorial and follow the
instructions to set up your field lookup.

•

The original data set includes a product_id field that is the catalog number for
the items sold at the Flower & Gift shop. The field lookup adds three new fields
to your events: product_name, which is a descriptive name for the item;
product_type, which is a category for the item; and price, which is the cost of
the item.

317

After you configure the field lookup, you can run this search using the time
range, All time.
Chart the number of purchases made daily for each type of product.

sourcetype=access_* action=purchase | timechart span=1d count by

product_type usenull=f

This example searches for all purchases events (defined by the
action=purchase) and pipes those results into the timechart command. The
span=1day argument buckets the count of purchases over the week into daily
chunks. The usenull=f argument tells Splunk to ignore any events that contain a
NULL value for product_type. This produces the following table:

Click Show report to format the chart in Report Builder. Here, it's formatted as a
column chart over time:

You can compare the number of different items purchased each day and over the
course of the week. It looks like day-to-day, the number of purchases for each
item do not vary significantly.

318

 Example 3

This example uses the sample dataset from the tutorial and a field lookup to add more
information to the event data.

Download the data set from this topic in the tutorial and follow the
instructions to upload it to Splunk.

•

Download the CSV file from this topic in the tutorial and follow the
instructions to set up your field lookup.

•

The original data set includes a product_id field that is the catalog number for
the items sold at the Flower & Gift shop. The field lookup adds three new fields
to your events: product_name, which is a descriptive name for the item;
product_type, which is a category for the item; and price, which is the cost of
the item.

After you configure the field lookup, you can run this search using the time
range, All time.
Count the total revenue made for each item sold at the shop over the course of
the week. This examples shows two ways to do this.

1. This first search uses the span argument to bucket the times of the search
results into 1 day increments. Then uses the sum() function to add the price for
each product_name.

sourcetype=access_* action=purchase | timechart span=1d sum(price) by

product_name usenull=f

2. This second search uses the per_day() function to calculate the total of the
price values for each day.

sourcetype=access_* action=purchase | timechart per_day(price) by

product_name usenull=f

Both searches produce the following results table:

319

Click Show report to format the chart in Report Builder. Here, it's formatted as a
column chart over time:

Now you can compare the total revenue made for items purchased each day and
over the course of the week.

 Example 4

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Chart yesterday's views and purchases at the Flower & Gift shop.

sourcetype=access_* | timechart per_hour(eval(method="GET")) AS Views,

per_hour(eval(action="purchase")) AS Purchases

This search uses the per_hour() function and eval expressions to search for
page views (method=GET) and purchases (action=purchase). The results of the
eval expressions are renamed as Views and Purchases, respectively. This
produces the following results table:

320

Click Show report to format the chart in Report Builder. Here, it's formatted as
an area chart:

The difference between the two areas indicates that all the views did not lead to
purchases. If all views lead to purchases, you would expect the areas to overlay
atop each other completely so that there is no difference between the two areas.

 Example 5

This example uses the sample dataset from the tutorial but should work with any format of
Apache Web access log. Download the data set from this topic in the tutorial and
follow the instructions to upload it to Splunk. Then, run this search using the
time range, Other > Yesterday.
Search the Web access logs and count the number of page requests over time.

sourcetype=access_* | timechart count(eval(method="GET")) AS GET,

count(eval(method="POST")) AS POST

321

This search uses the count() function and eval expressions to count the
different page request methods, GET or POST. This produces the following result
table:

Click Show report to format the chart in Report Builder. Here, it's formatted as a
line chart:

Note: You can use the stats, chart, and timechart commands to perform the
same statistical calculations on your data. The stats command returns a table of
results. The chart command returns the same table of results, but you can use
the Report Builder to format this table as a chart. If you want to chart your results
over a time range, use the timechart command. You can also see variations of
this example with the chart and timechart commands.

 More examples

Example 1: Compute the product of the average "CPU" and average "MEM"
each minute for each "host"

322

... | timechart span=1m eval(avg(CPU) * avg(MEM)) by host

Example 2: Display timechart of the avg of cpu_seconds by processor rounded
to 2 decimal places.

... | timechart eval(round(avg(cpu_seconds),2)) by processor

Example 3: Calculate the average value of "CPU" each minute for each "host".

... | timechart span=1m avg(CPU) by host

Example 4: Create a timechart of average "cpu_seconds" by "host", and remove
data (outlying values) that may distort the timechart's axis.

... | timechart avg(cpu_seconds) by host | outlier action=tf

Example 5: Graph the average "thruput" of hosts over time.

... | timechart span=5m avg(thruput) by host

Example 6: Example usage

sshd failed OR failure | timechart span=1m count(eventtype) by source_ip

usenull=f where count>10

 See also

bucket, chart, sitimechart

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the timechart command.

 top

 Synopsis

Displays the most common values of a field.

 Syntax

top <top-opt>* <field-list> [<by-clause>]

323

 Required arguments

<field-list>
Syntax: <field>, ...
Description: Comma-delimited list of field names.

<top-opt>
Syntax: countfield=<string> | limit=<int> | otherstr=<string> |
percentfield=<string> | showcount=<bool> | showperc=<bool> |
useother=<bool>
Description: Options for top.

 Optional arguments

<by-clause>
Syntax: by <field-list>
Description: The name of one or more fields to group by.

 Top options

countfield
Syntax: countfield=<string>
Description: Name of a new field to write the value of count, default is
"count".

limit
Syntax: limit=<int>
Description: Specifies how many tuples to return, "0" returns all values.
Default is "10".

otherstr
Syntax: otherstr=<string>
Description: If useother is true, specify the value that is written into the
row representing all other values. Default is "OTHER".

percentfield
Syntax: percentfield=<string>
Description: Name of a new field to write the value of percentage, default
is "percent".

showcount
Syntax: showcount=<bool>

324

Description: Specify whether to create a field called "count" (see
"countfield" option) with the count of that tuple. Default is true.

showperc
Syntax: showperc=<bool>
Description: Specify whether to create a field called "percent" (see
"percentfield" option) with the relative prevalence of that tuple. Default is
true.

useother
Syntax: useother=<bool>
Description: Specify whether or not to add a row that represents all
values not included due to the limit cutoff. Default is false.

 Description

Finds the most frequent tuple of values of all fields in the field list, along with a
count and percentage. If a the optional by-clause is provided, we will find the
most frequent values for each distinct tuple of values of the group-by fields.

 Examples

Example 1: Return the 20 most common values of the "url" field.

... | top limit=20 url

Example 2: Return top "user" values for each "host".

... | top user by host

Example 3: Return top URL values.

... | top url

 See also

rare, sitop, stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the top command.

325

 transaction

 Synopsis

Groups events into transactions.

 Syntax

transaction [<field-list>] [name=<transaction-name>] [<txn_definition-opt>]*
[<memcontrol-opt>]* [<rendering-opt>]*

 Required arguments

txn_definition-opt
Syntax: <maxspan> | <maxpause> | <maxevents> | <startswith> |
<endswith> | <connected> | <unifyends> | <keeporphans>
Description: Transaction definition options.

memcontrol-opt
Syntax: <maxopentxn> | <maxopenevents> | <keepevicted>
Description: Memory constraint options.

rendering-opt
Syntax: <delim> | <mvlist> | <mvraw> | <nullstr>
Description: Multivalue rendering options.

 Optional arguments

field-list
Syntax: <string>, ...
Description: One field or a list of field names. The events are grouped
into transactions based on the values of this field. If a quoted list of fields
is specified, events are grouped together if they have the same value for
each of the fields.

name
Syntax: name=<transaction-name>
Description: The name of a stanza from transactiontypes.conf to be
used for finding transactions. If other arguments (e.g., maxspan) are
provided, they overrule the value specified in the transaction definition.

326

 Transaction definition options

connected=<bool>
Description: Relevant if fields is not empty. Controls whether an event
that is not inconsistent and not consistent with the fields of a transaction,
opens a new transaction (connected=t) or is added to the transaction. An
event can be not inconsistent and not consistent if it contains fields
required by the transaction but none of these fields has been instantiated
in the transaction (by a previous event addition).

endswith=<filter-string>
Description: A search or eval filtering expression which if satisfied by an
event marks the end of a transaction.

keeporphans=<bool>
Description: Specify whether the transaction command should output the
results that are not part of any transactions. The results that are passed
through as "orphans" are distinguished from transaction events with a
_txn_orphan field, which has a value of 1 for orphan results. Defaults to
false|f.

maxspan=<int>(s|m|h|d)?
Description: The maxspan constraint requires the transaction's events to
span less than maxspan. If value is negative, disable the maxspan
constraint. By default, maxspan=-1 (no limit).

maxpause=<int>(s|m|h|d)?
Description: The maxpause constraint requires there be no pause
between a transaction's events of greater than maxpause. If value is
negative, disable the maxpause constraint. By default, maxpause=-1 (no
limit).

maxevents=<int>
Description: The maximum number of events in a transaction. If the value
is negative this constraint is disabled. By default, maxevents=1000.

startswith=<filter-string>
Description: A search or eval filtering expression which if satisfied by an
event marks the beginning of a new transaction.

unifyends=<bool>
Description: Whether to force events that match startswith/endswith
constraint(s) to also match at least one of the fields used to unify events

327

into a transaction. By default, unifyends=f.

 Filter string options

<filter-string>
Syntax: <search-expression> | (<quoted-search-expression>) |
eval(<eval-expression>)
Description: A search or eval filtering expression which if satisfied by an
event marks the end of a transaction.

<search-expression>
Description: A valid search expression that does not contain quotes.

<quoted-search-expression>
Description: A valid search expression that contains quotes.

<eval-expression>
Description: A valid eval expression that evaluates to a Boolean.

 Memory constraint options

keepevicted=<bool>
Description: Whether to output evicted transactions. Evicted transactions
can be distinguished from non-evicted transactions by checking the value
of the 'closed_txn' field, which is set to '0' for evicted transactions and '1'
for closed ones. 'closed_txn' is set to '1' if one of the following conditions is
hit: maxevents, maxpause, maxspan, startswith (for this last one, because
transaction sees events in reverse time order, it closes a transaction when
it satisfies the start condition). If none of these conditions is specified, all
transactions will be output even though all transactions will have
'closed_txn' set to '0'. A transaction can also be evicted when the memory
limitations are reached.

maxopenevents=<int>
Description: Specifies the maximum number of events (which are) part of
open transactions before transaction eviction starts happening, using LRU
policy. The default value of this field is read from the transactions stanza
in limits.conf.

maxopentxn=<int>
Description: Specifies the maximum number of not yet closed
transactions to keep in the open pool before starting to evict transactions,
using LRU policy. The default value of this field is read from the

328

transactions stanza in limits.conf.

 Multivalue rendering options

delim=<string>
Description: In conjunction with mvraw=t, a string used to delimit the
values of _raw. By default, delim=" ".

mvlist=<bool> | <field-list>
Description: Flag controlling whether the multivalued fields of the
transaction are (mvlist=t) a list of the original events ordered in arrival
order or (mvlist=f) a set of unique field values ordered lexigraphically. If a
comma/space delimited list of fields is provided only those fields are
rendered as lists. By default, mvlist=f.

mvraw=<bool>
Description: Used to specify whether the _raw field of the transaction
search result should be a multivalued field. By default, mvraw=f.

nullstr=<string>
Description: A string value to use when rendering missing field values as
part of multivalued fields in a transaction. This option applies only to fields
that are rendered as lists. By defaults, nullstr="NULL".

 Description

Given events as input, finds transactions based on events that meet various
constraints. Transactions are made up of the raw text (the _raw field) of each
member, the time and date fields of the earliest member, as well as the union of
all other fields of each member.

Splunk does not necessarily interpret the transaction defined by multiple fields as
a conjunction (field1 AND field2 AND field3) or a disjunction (field1 OR
field2 OR field3) of those fields. If there is a transitive relationship between the
fields in the fields list, the transaction command will use it. For example, if you
searched for

... | transaction host cookie

you might see the following events grouped into a transaction:

event=1 host=a
event=2 host=a cookie=b

329

event=3 cookie=b

The transaction command produces two fields, duration and eventcount. The
duration value is the difference between the timestamps for the first and last
events in the transaction. The eventcount value is the number of events in the
transaction.

 Examples

 Example 1

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Define a transaction based on Web access events that share the same IP
address. The first and last events in the transaction should be no more than thirty
seconds apart and each event should not be longer than five seconds apart.

sourcetype=access_* | transaction clientip maxspan=30s maxpause=5s

This produces the following events list:

This search groups events together based on the IP addresses accessing the
server and the time constraints. The search results may have multiple values for
some fields, such as host and source. For example, requests from a single IP
could come from multiple hosts if multiple people were shopping from the same
office. For more information, read the topic "About transactions" in the
Knowledge Manager manual.

330

 Example 2

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Define a transaction based on Web access events that have a unique
combination of host and clientip values. The first and last events in the
transaction should be no more than thirty seconds apart and each event should
not be longer than five seconds apart.

sourcetype=access_* | transaction clientip host maxspan=30s maxpause=5s

This produces the following events list:

In contrast to the transaction in Example 1, each of these events have a distinct
combination of the IP address (clientip values) and host values within the limits
of the time constraints. Thus, you should not see different values of host or
clientip addresses among the events in a single transaction.

 Example 3

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, Other > Yesterday.
Define a purchase transaction as 3 events from one IP address which occur in a
ten minute span of time.

sourcetype=access_* action=purchase | transaction clientip maxspan=10m

maxevents=3

This search defines a purchase event based on Web access events that have
the action=purchase value. These results are then piped into the transaction

331

command. This search identifies purchase transactions by events that share the
same clientip, where each session lasts no longer than 10 minutes, and
includes no more than three events.

This produces the following events list:

This above results show the same IP address appearing from different host
domains.

 Example 4

This example uses generated email data (sourcetype=cisco_esa). You should be able
to run this example on any email data by replacing the sourcetype=cisco_esa
with your data's sourcetype value.
Define an email transaction as a group of up to 10 events each containing the
same value for the mid (message ID), icid (incoming connection ID), and dcid
(delivery connection ID) and with the last event in the transaction containing a
"Message done" string.

sourcetype="cisco_esa" | transaction mid dcid icid maxevents=10

endswith="Message done"

This produces the following events list:

332

Here, you can see that each transaction has no more than ten events. Also, the
last event includes the string, "Message done" in the event line.

 Example 5

This example uses generated email data (sourcetype=cisco_esa). You should be able
to run this example on any email data by replacing the sourcetype=cisco_esa
with your data's sourcetype value.
Define an email transaction as a group of up to 10 events each containing the
same value for the mid (message ID), icid (incoming connection ID), and dcid
(delivery connection ID). The first and last events in the transaction should be no
more than five seconds apart and each transaction should have no more than ten
events.

sourcetype="cisco_esa" | transaction mid dcid icid maxevents=10

maxspan=5s mvlist=t

By default, the values of multivalue fields are suppressed in search results
(mvlist=f). Specifying mvlist=t in this search tells Splunk to display all the
values of the selected fields. This produces the following events list:

333

Here you can see that each transaction has a duration that is less than five
seconds. Also, if there is more than one value for a field, each of the values is
listed.

 Example 6

This example uses the sample dataset from the tutorial. Download the data set from this
topic in the tutorial and follow the instructions to upload it to Splunk. Then, run
this search using the time range, All time.
Define a transaction as a group of events that have the same session ID
(JSESSIONID) and come from the same IP address (clientip) and where the first
event contains the string, "signon", and the last event contains the string,
"purchase".

sourcetype=access_* | transaction JSESSIONID clientip

startswith="*signon*" endswith="purchase" | where duration>0

The search defines the first event in the transaction as events that include the
string, "signon", using the startswith="*signon*" argument. The
endswith="purchase" argument does the same for the last event in the
transaction.

This example then pipes the transactions into the where command and the
duration field to filter out all the transactions that took less than a second to
complete:

334

You might be curious about why the transactions took a long time, so viewing
these events may help you to troubleshoot. You won't see it in this data, but
some transactions may take a long time because the user is updating and
removing items from his shopping cart before he completes the purchase.

 More examples

Example 1: Group search results that that have the same host and cookie value,
occur within 30 seconds, and do not have a pause of more than 5 seconds
between the events.

... | transaction host cookie maxspan=30s maxpause=5s

Example 2: Group search results that have the same value of "from", with a
maximum span of 30 seconds, and a pause between events no greater than 5
seconds into a transaction.

... | transaction from maxspan=30s maxpause=5s

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the transaction command.

 transpose

 Synopsis

Returns the specified number of rows (search results) as columns (list of field
values), such that each search row becomes a column.

335

 Syntax

transpose [int]

 Required arguments

int
Syntax: <int>
Description: Limit the number of rows to transpose. Default is 5.

 Examples

Example 1: Transpose your first five search results, so that each column
represents an event and each row, the field values.

... | transpose

 See also

fields, stats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the transpose command.

 trendline

 Synopsis

Computes the moving averages of fields.

 Syntax

trendline <trendtype><period>(<field>) [AS <newfield>]

 Required arguments

trendtype
Syntax: syntax = sma|ema|wma
Description: The type of trend to compute. Current supported trend types
include simple moving average (sma), exponential moving average (ema),

336

and weighted moving average (wma).

period
Syntax: <num>
Description: The period over which to compute the trend, an integer
between 2 and 10000.

<field>
Syntax: <field>
Description: The name of the field on which to calculate the trend.

 Optional arguments

<newfield>
Syntax: <field>
Description: Specify a new field name to write the output to. Defaults to
<trendtype><period>(<field>).

 Description

Computes the moving averages of fields: simple moving average (sma),
exponential moving average(ema), and weighted moving average(wma) The
output is written to a new field, which you can specify.

 Examples

Example 1: Computes a five event simple moving average for field 'foo' and
write to new field 'smoothed_foo.' Also, in the same line, computes ten event
exponential moving average for field 'bar' and write to field 'ema10(bar)'.

... | trendline sma5(foo) as smoothed_foo ema10(bar)

 See also

accum, autoregress, delta, streamstats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the trendline command.

337

 typeahead

 Synopsis

Returns typeahead on a specified prefix.

 Syntax

typeahead prefix=<string> count=<int> [max_time=<int>] [<index-specifier>]
[<starttimeu>] [<endtimeu>] [collapse]

 Required arguments

prefix
Syntax: prefix=<string>
Description: The full search string to return typeahead information.

count
Syntax: count=<int>
Description: The maximum number of results to return.

 Optional arguments

index-specifier
Syntax: index=<string>
Description: Search the specified index instead of the default index.

max_time
Syntax: max_time=<int>
Description: The maximum time in seconds that typeahead can run. If
max_time=0, there is no limit.

startimeu
Syntax: starttimeu=<int>
Description: Set the start time to N seconds since the epoch (Unix time).
Defaults to 0.

endtimeu
Syntax: endtimeu=<int>
Description: Set the end time to N seconds since the epoch (Unix time).
Defaults to now.

338

collapse
Syntax: collapse=<bool>
Description: Specify whether to collapse terms that are a prefix of
another term and the event count is the same. Defaults to true.

 Description

Returns typeahead on a specified prefix. Only returns a max of count results, can
be targeted to an index and restricted by time.

 Examples

Example 1: Return typeahead information for sources in the "_internal" index.

| typeahead prefix=source count=10 index=_internal

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the typeahead command.

 typelearner

 Synopsis

Generates suggested eventtypes.

 Syntax

typelearner [grouping-field] [grouping-maxlen]

 Optional arguments

grouping-field
Syntax: <field>
Description: The field with values for typelearner to use when initially
grouping events. Defaults to punct, the punctuation seen in _raw.

grouping-maxlen
Syntax: maxlen=<int>
Description: Determines how many characters in the grouping-field value
to look at. If set to negative, the entire value of the grouping-field value is

339

used to group events. Defaults to 15.

 Description

Takes previous search results, and produces a list of promising searches that
may be used as event-types. By default, the typelearner command initially
groups events by the value of the grouping-field, and then further unifies and
merges those groups, based on the keywords they contain.

 Examples

Example 1: Have Splunk automatically discover and apply event types to search
results

... | typelearner

 See also

typer

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the typelearner command.

 typer

 Synopsis

Calculates the eventtypes for the search results

 Syntax

typer

 Description

Calculates the 'eventtype' field for search results that match a known event-type.

340

 Examples

Example 1: Force Splunk to apply event types that you have configured (Splunk
Web automatically does this when you view the "eventtype" field).

... | typer

 See also

typelearner

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the typer command.

 uniq

 Synopsis

Filters out repeated adjacent results.

 Syntax

uniq

 Description

The uniq command works as a filter on the search results that you pass into it. It
removes any search result if it is an exact duplicate with the previous result. This
command does not take any arguments.

Note: We don't recommend running this command against a large dataset.

 Examples

Example 1: Keep only unique results from all web traffic in the past hour.

eventtype=webtraffic earliest=-1h@s | uniq

341

 See also

dedup

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the uniq command.

 untable

 Synopsis

Converts results from a tabular format to a format similar to stats output. Inverse
of xyseries.

 Syntax

untable <x-field> <y-name-field> <y-data-field>

 Required arguments

<x-field>
Syntax: <field>
Description: Field to be used as the x-axis.

<y-name-field>
Syntax: <field>
Description: Field that contains the values to be used as labels for the
data series.

<y-data-field>
Syntax: <field>
Description: Field that contains the data to be charted.

 Examples

Example 1: Reformat the search results.

... | timechart avg(delay) by host | untable _time host avg_delay

342

 See also

xyseries

 where

 Synopsis

Runs an eval expression to filter the results. The result of the expression must be
Boolean.

 Syntax

where <eval-expression>

 Functions

The where command includes the following functions: abs(), case(), ceil(),
ceiling(), cidrmatch(), coalesce(), commands(), exact(), exp(), floor(),
if(), ifnull(), isbool(), isint(), isnotnull(), isnull(), isnum(),
isstr(), len(), like(), ln(), log(), lower(), ltrim(), match(), max(),
md5(), min(), mvappend(), mvcount(), mvindex(), mvfilter(), mvjoin(),
now(), null(), nullif(), pi(), pow(), random(), relative_time(),
replace(), round(), rtrim(), searchmatch(), split(), sqrt(), strftime(),
strptime(), substr(), time(), tonumber(), tostring(), trim(), typeof(),

upper(), urldecode(), validate().

For descriptions and examples of each function, see "Functions for eval and
where".

 Description

The where command uses eval expressions to filter search results; it keeps only
the results for which the evaluation was successful (that is, the Boolean result
was true).

The where command uses the same expression syntax as eval. Also, both
commands interpret quoted strings as literals. If the string is not quoted, it is
treated as a field. Because of this, you can use where to compare two different
fields, which you cannot use search to do.

343

 Examples

Example 1: Return "CheckPoint" events that match the IP or is in the specified
subnet.

host="CheckPoint" | where like(src, "10.9.165.%") OR

cidrmatch("10.9.165.0/25", dst)

Example 2: Return "physicjobs" events with a speed is greater than 100.

sourcetype=physicsjobs | where distance/time > 100

 See also

eval, search, regex

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the where command.

 x11

The x11 exposes the seasonal pattern in your time-based data series so that you
can subtract it from the underlying data and see the real trend. This command
has a similar purpose to the trendline command, but it uses the more
sophisticated and industry popular X11 method.

For more information, read "About predictive analytics with Splunk" in the Search
Manual.

 Synopsis

Remove seasonal fluctuations in fields.

 Syntax

x11 [<type>] [<period>=<int>] (<fieldname>) [as <newname>]

 Required arguments

<fieldname>
Syntax: <field>

344

Description: The name of the field to calculate the seasonal trend.

 Optional arguments

<type>
Syntax: add() | mult()
Description: Specify the type of x11 to compute, additive or multiplicative.
Defaults to mult().

<period>
Syntax: <int>
Description: The period of the data relative to the number of data points,
expressed as an integer between 5 and 10000. If the period is 7, the
command expects the data to be periodic ever 7 data points. If not
supplied, Splunk computes the period automatically. The algorithm does
not work if the period is less than 5 and will be too slow if the period if
greater than 10000.

<newname>
Syntax: <string>
Description: Specify a field name for the output of x11. Otherwise,
defaults to the specified "<type><period>(<fieldname>)".

 Examples

Example 1: Here type is the default 'mult' and period is 15.

index=download | timechart span=1d count(file) as count | x11

mult15(count)

Note: Here, because the span=1d, every data point accounts for 1 day. And, as
a result, the period in this example is 15 days.

Example 2: Here type is 'add' and period is 20.

iindex=download | timechart span=1d count(file) as count | x11

add20(count)

345

 See also

predict, trendline

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the x11 command.

 xmlkv

 Synopsis

Extracts xml key-value pairs.

 Syntax

xmlkv maxinputs=<int>

 Required arguments

maxinputs
Syntax: maxinputs=<int>
Description:

 Description

Finds key value pairs of the form <foo>bar</foo> where foo is the key and bar is
the value from the _raw key.

 Examples

Example 1: Extract field/value pairs from XML formatted data. "xmlkv"
automatically extracts values between XML tags.

346

... | xmlkv

Example 2: Example usage

... | xmlkv maxinputs=10000

 See also

extract, kvform, multikv, rex, xpath

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the xmlkv command.

 xmlunescape

 Synopsis

Un-escapes xml characters.

 Syntax

xmlunescape maxinputs=<int>

 Required arguments

maxinputs
Syntax: maxinputs=<int>
Description:

 Description

Un-escapes xml entity references (for: &, <, and >) back to their corresponding
characters (e.g., & -> &).

 Examples

Example 1: Un-escape all XML characters.

... | xmlunescape

347

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the xmlunescape command.

 xpath

 Synopsis

Extracts the xpath value from field and sets the outfield attribute.

 Syntax

xpath [outfield=<field>] <string:xpath> [field=<field>] [default=<string>]

 Required arguments

xpath
Syntax: <string>
Description: Specify the XPath reference.

 Optional arguments

field
Syntax: field=<field>
Description: The field to find and extract the referenced xpath value.
Defaults to _raw.

outfield
Syntax: outfield=<field>
Description: The field to write the xpath value. Defaults to xpath.

default
Syntax: default=<string>
Description: If the attribute referenced in xpath doesn't exist, this
specifies what to write to outfield. If this isn't defined, there is no default
value.

348

 Description

Sets the value of outfield to the value of the xpath applied to field.

 Examples

Example 1: Extract the name value from _raw XML events, which might look like
this:

<foo>
<bar name="spock">
</bar>
</foo>

sourcetype="xml" | xpath outfield=name "//bar/@name"

Example 2: Extract the identity_id and instrument_id from the _raw XML
events:

 <DataSet xmlns="">
 <identity_id>3017669</identity_id>
 <instrument_id>912383KM1</instrument_id>
 <transaction_code>SEL</transaction_code>
 <sname>BARC</sname>
 <currency_code>USA</currency_code>
 </DataSet>

 <DataSet xmlns="">
 <identity_id>1037669</identity_id>
 <instrument_id>219383KM1</instrument_id>
 <transaction_code>SEL</transaction_code>
 <sname>TARC</sname>
 <currency_code>USA</currency_code>
 </DataSet>

... | xpath outfield=identity_id "//DataSet/identity_id"

This search will return two results: identity_id=3017669 and
identity_id=1037669.

... | xpath outfield=instrument_id

"//DataSet[sname=\"BARC\"]/instrument_id"

Because you specify sname="BARC", this search will return one result:
instrument_id=912383KM1.

349

 See also

extract, kvform, multikv, rex, spath, xmlkv

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the xpath command.

 xyseries

 Synopsis

Converts results into a format suitable for graphing.

 Syntax

xyseries [grouped=<bool>] <x-field> <y-name-field> <y-data-field>...
[sep=<string>]

 Required arguments

<x-field>
Syntax: <field>
Description: Field to be used as the x-axis.

<y-name-field>
Syntax: <field>
Description: Field that contains the values to be used as labels for the
data series.

<y-data-field>
Syntax: <field> | <field>, <field>, ...
Description: Field(s) that contains the data to be charted.

 Optional arguments

grouped
Syntax: grouped= true | false
Description: If true, indicates that the input is sorted by the value of the
<x-field> and multi-file input is allowed. Defaults to false.

350

sep
Syntax: sep=<string>
Description:

 Examples

Example 1: Reformat the search results.

... | xyseries delay host_type host

Example 2: Refer to this walkthrough to see how you can combine stats and
eval with the xyseries command to create a report on multiple data series.

 See also

untable

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the xyseries command.

351

Internal Search Commands

 About internal commands

Internal search commands refer to search commands that are experimental.
They may be removed or updated and reimplemented differently in future
versions. They are not supported commands.

 collapse

The collapse command is an experimental command and not supported by
Splunk.

 Synopsis

Condenses multi-file results into as few files as chunksize option will allow.

 Syntax

... | collapse [chunksize=<num>] [force=<bool>]

 Optional arguments

chunksize
Syntax: chunksize=<num>
Description: Limits the number of resulting files. Default is 50000.

force
Syntax: force=<bool>
Description: If force=true and the results are entirely in memory, re-divide
the results into appropriated chunked files. Default is false.

Description

The collapse command is automatically invoked by output* operators.

352

Examples

Example 1: Collapse results.

... | collapse

 dispatch

The dispatch command is no longer required; all Splunk searches are run as
dispatch searches. For more information, see the search command.

 runshellscript

The runshellscript command is an internal command used to execute scripted
alerts. Currently, it is not supported by Splunk.

 Synopsis

Execute scripted alerts.

 Syntax

runshellscript <script-filename> <result-count> <search-terms> <search-string>
<savedsearch-name> <description> <results-url> <deprecated-arg> <search-id>
<results_file>

 Description

Internal command used to execute scripted alerts. The script file needs to be
located in either $SPLUNK_HOME/etc/system/bin/scripts OR
$SPLUNK_HOME/etc/apps/<app-name>/bin/scripts. The search ID is used to
create a path to the search's results. All other arguments are passed to the script
(unvalidated) as follows:

Argument Description
$0 The filename of the script.

$1 The result count, or number of events returned.

$2 The search terms.

$3 The fully qualified query string.

353

$4 The name of the saved search in Splunk.

$5 The description or trigger reason (i.e. "The number of events was greater than
1").

$6 The link to saved search results.

$7 DEPRECATED - empty string argument.

$8 The search ID

$9 The path to the results file, results.csv. (Contains raw results.)

For more information, check out this excellent topic on troubleshooting alert
scripts on the Splunk Community Wiki and see "Configure scripted alerts" in the
Alerting Manual.

 See also

script

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the runshellscript command.

 tscollect

The tscollect command is an internal command used to save search results into
a tsidx formatted file. Currently, it is an experimental command and not
supported by Splunk.

The tscollect command uses indexed fields to create time series index (tsidx)
files in a namespace that you define. The result tables in these files are a subset
of the data that you've already indexed. This then enables you to use the tstats
command to search and report on these tsidx files instead of searching raw data.
Because you are searching on a subset of the full index, the search should
complete faster than it would otherwise.

tscollect can create multiple tsidx files in the same namespace. It will begin a
new tsidx file when it determines that the one it's currently creating has gotten big
enough.

354

 Synopsis

Writes results into tsidx file(s) for later use by tstats command.

Important: The 'indexes_edit' capability is required to run this command.

 Syntax

... | tscollect namespace=<string> [squashcase=<bool>] [keepresults=<bool>]

 Optional arguments

keepresults
Syntax: keepresults = true | false
Description: If true, tscollect outputs the same results it received as input.
If false, tscollect returns the count of results processed (this is more
efficient since it does not need to store as many results). Defaults to false.

namespace
Syntax: namespace=<string>
Description: Define a location for the tsidx file(s). If namespace is
provided, the tsidx files are written to a directory of that name under the
main tsidxstats directory (that is, within $SPLUNK_DB/tsidxstats). These
namespaces can be written to multiple times to add new data. If
namespace is not provided, the files are written to a directory within the
job directory of that search, and will live as long as the job does. This
namespace location is also configurable in index.conf, with the attribute
tsidxStatsHomePath.

squashcase
Syntax: squashcase = true | false
Description: Specify whether or not the case for the entire field::value
tokens are case sensitive when it is put into the lexicon. To create indexed
field tsidx files similar to Splunk's, set squashcase=true for results to be
converted to all lowercase. Defaults to false.

 Examples

Example 1: Write the results table to tsidx files in namespace foo.

... | tscollect namespace=foo

355

Example 2: Write the values of field foo for the events in the main index to tsidx
files in the job directory.

index=main | fields foo | tscollect

 See also

collect, stats, tstats

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the tscollect command.

 tstats

The tstats command is an internal command used to calculate statistics over
tsidx files created with the tscollect command. Currently, it is an experimental
command and not supported by Splunk.

When you want to report on very large data sets, use the tscollect command to
save search results into a tsidx file that exists in a specific namespace (that you
create with the tscollect command).

Then use the tstats command to calculate statistics on the data summarized
into the tsidx file. Because you are not reading events from raw data, you can
expect significantly faster search and reporting performance. tstats operates in
a manner similar to that of stats; the primary differences are that:

it is a generating processor, so it must be the first command in a search•
it uses a smaller set of stats functions•
it requires you to specify the namespace for the target tsidx file or the job
id of the tscollect job

•

Since tstats does not support all the functionality of the normal stats command,
you have the option to output results in the prestats format for use by stats, which
combines the speed of tstats with all the functionality of stats. Operating in
prestats mode also enables preview for results, so this is highly recommended
for large data sets.

Note: Except in prestats and append modes (prestats=t and append=t), this is
command is a generating processor, so it must be the first command in a search.

356

See the Syntax below for more details.

 Synopsis

Performs statistical queries on tsidx files created using tscollect.

 Syntax

| tstats [append=<bool>] [prestats=<bool>] <aggregate-opt>... FROM
<namespace|tscollect-job-id> [WHERE <search_query>] [GROUPBY <field-list>
[span=<timespan>]]

 Required arguments

aggregate-opt
Syntax:
count|count(<field>)|sum(<field>)|sumsq(<field>)|distinct(<field>)|avg(<field>)|stdev(<field>)|<stats-fn>(<field>)
[AS <string>]
Description: Either perform a basic count, get the values of a field, or
perform a function. You can also rename the result using 'AS'. While there
are only a few directly supported functions in tstats, if you are running with
the prestats option (and only then) you can supply any function that stats
supports with <stats-fn>.

namespace
Syntax: <string>
Description: Define a location for the tsidx file with
$SPLUNK_DB/tsidxstats. This namespace location is also configurable in
index.conf, with the attribute tsidxStatsHomePath.

tscollect-job-id
Syntax: <string>
Description: The job ID of a tscollect search.

 Optional arguments

append
Syntax: append=<bool>
Description: When in prestats mode (prestats=t), enables append=t
where the prestats results append to any input results.

prestats
Syntax: prestats=<bool>

357

Description: Use this to perform any stats function that tstats does not
support (is not listed as an aggregate option). When true, this option also
enables preview for results. For more information see Functions for stats,
chart, and timechart. Defaults to false.

<field-list>
Syntax: <field>, <field>, ...
Description: Specify a list of fields to group results.

 Filtering with where

You can provide any number of aggregates (aggregate-opt) to perform, and also
have the option of providing a filtering query using the WHERE keyword. This
query looks like a normal query you would use in the search processor.

 Grouping by _time

You can provide any number of GROUPBY fields. If you are grouping by _time,
you should supply a timespan for grouping the time buckets. This timespan looks
like any normal timespan in Splunk, span='1hr' or '3d'.

 Examples

Example 1: Gets the count of all events in the mydata namespace.

| tstats count FROM mydata

Example 2: Returns the average of the field foo in mydata, specifically where bar
is value2 and the value of baz is greater than 5.

| tstats avg(foo) FROM mydata WHERE bar=value2 baz>5

Example 3: Gives the count split by each day for all the data in mydata

| tstats count from mydata GROUPBY _time span=1d

Example 4: Uses prestats mode to calculate the median of the field foo.

| tstats prestats=t median(foo) FROM mydata | stats median(foo)

Example 5: Use prestats mode in conjunction with append to compute the
median values of foo and bar, which are in different namespaces.

| tstats prestats=t median(foo) from mydata | tstats prestats=t append=t

median(bar) from my otherdata | stats median(foo) median(bar)

358

 See also

stats, tscollect

 Answers

Have questions? Visit Splunk Answers and see what questions and answers the
Splunk community has using the tstats command.

359

Search in the CLI

 About searches in the CLI

You can use the Splunk CLI to monitor, configure, and execute searches on your
Splunk server. This topic discusses how to search from the CLI.

If you're looking for how to access the CLI and find help for it, refer to
"About the CLI" in the Admin manual.

•

 CLI help for search

You can run both historical and real-time searches from the CLI in Splunk by
invoking the search or rtsearch commands, respectively. The following is a table
of useful search-related CLI help objects. To see the full help information for
each object, type into the CLI:

./splunk help <object>

Object Description
rtsearch Returns the parameters and syntax for real-time searches.

search Returns the parameters and syntax for historical searches.

search-commands Returns a list of search commands that you can use from the CLI.

search-fields Returns a list of default fields.

search-modifiers Returns a list of search and time-based modifiers that you can use to
narrow your search.

 Search in the CLI

Historical and real-time searches in the CLI work the same way as searches in
Splunk Web except that there is no timeline rendered with the search results and
there is no default time range. Instead, the results are displayed as a raw events
list or a table, depending on the type of search.

For more information, read "Type of searches" in the Search Overview
chapter of the Search Manual.

•

The syntax for CLI searches is similar to the syntax for searches you run from
Splunk Web except that you can pass parameters outside of the query to control

360

the time limit of the search, tell Splunk which server to run the search, and
specify how Splunk displays results.

For more information about the CLI search options, see the next topic in
this chapter, "CLI search syntax".

•

For more information about how to search remote Splunk servers from
your local server, see "Access and use the CLI on a remote server" in the
Admin manual.

•

 Syntax for searches in the CLI

This is a quick discussion of the syntax and options available for using the search
and rtsearch commands in the CLI.

The syntax for CLI searches is similar to the syntax for searches you run from
Splunk Web except that you can pass parameters outside of the search object to
control the time limit of the search, tell Splunk which server to run the search,
and specify how Splunk displays results.

search | rtsearch [object][-parameter <value>]

 Search objects

Search objects are enclosed in single quotes (' ') and can be keywords,
expressions, or a series of search commands. On Windows OS use double
quotes (" ") to enclose your search object.

For more information about searching in Splunk, see the "Start searching"
topic in the Splunk Tutorial.

•

For the complete list of search commands, see "All search commands" in
the Search Reference Manual.

•

For a quick reference search language and search commands, see the
"Search Command Cheat Sheet and Search Language Quick Reference
Card" in the Search Reference Manual.

•

Search objects can include not only keywords and search commands but also
fields and modifiers to specify the events you want to retrieve and the results you
want to generate.

For more information about fields, see the "Use fields to search" topic in
the Splunk Tutorial.

•

361

For more information about default fields and how to use them, see the
"Use default and internal fields" topic in the Knowledge Manager Manual.

•

For more information about time modifiers, see the "Time modifiers for
search" topic in the Search Reference Manual.

•

 Search parameters

Search parameters are options that control the way the search is run or the way
the search results are displayed. All of these parameters are optional.
Parameters that take Boolean values support {0, false, f, no} as negatives
and {1, true, t, yes} positives.

Parameter Value(s) Default(s) Description

app <app_name> search
Specify the name
of the app in which
to run your search.

batch <bool> F
Indicates how to
handle updates in
preview mode.

detach <bool> F

Triggers an
asynchronous
search and
displays the job ID
and TTL for the
search.

earliest_time <time-modifier> −

The relative time
modifier for the
start time of the
search. This is
optional for both
search and
rtsearch.

header <bool> T

Indicates whether
to display a
header in the table
output mode.

latest_time <time-modifer> − The relative time
modifer for the end
time of search. For
search, if this is
not specified, it
defaults to the end
of the time (or the
time of the last
event in the data),

362

so that any
"future" events are
also included. For
rtsearch, this
is a required
parameter and
the real-time
search will not
run if it's not
specified.

max_time <number> 0

The length of time
in seconds that a
search job runs
before it is
finalized. A value
of 0 means that
there is no time
limit.

maxout <number>
search, 100

rtsearch, 0

The maximum
number of events
to return or send
to stdout (when
exporting events).
The maximum
allowable value is
10000. A value of
0 means that it will
output an
unlimited number
of events.

output rawdata, table, csv, auto

For
non-transforming
searches,
rawdata.

For
transforming
searches,
table.

Indicates how to
display the job.

preview <bool> T

Indicates that
reporting searches
should be
previewed
(displayed as
results are
calculated).

363

timeout <number> 0

The length of time
in seconds that a
search job is
allowed to live
after running. A
value of 0 means
that the job is
canceled
immediately after it
is run.

uri [http|https]://name_of_server:management_port

Specify the server
name and
management port.
name_of_server

can be the
fully-resolved
domain name
or the IP
address of the
Splunk server.

The default uri
value is the
mgmtHostPort

value that you
defined in the
Splunk server's
web.conf.

For more
information,
see Access
and use the
CLI on a
remote Splunk
Server in the
Admin manual.

wrap <bool> T

Indicates whether
to line wrap for
individual lines
that are longer
than the terminal
width.

364

 Examples

You can see more examples in the CLI help information.

Example 1: Retrieve events from yesterday that match root sessions.

./splunk search "session root daysago=1"

Example 2: Retrieve events that match web access errors and detach the
search.

./splunk search 'eventtype=webaccess error' -detach true

Example 3: Run a windowed real-time search.

./splunk rtsearch 'index=_internal' -earliest_time 'rt-30s' -latest_time 'rt+30s'

See more examples of Real-time searches and reports in the CLI in the Admin
manual.

365

	Table of Contents
	Introduction
	 Welcome to the Search Reference Manual
	 How to use this manual

	Search Reference Overview
	 Search Command Cheat Sheet and Search Language Quick Reference Card
	 Popular search commands
	 Splunk for SQL users

	Search Commands and Functions
	 All search commands
	 Functions for eval and where
	 Functions for stats, chart, and timechart
	 Common date and time format variables
	 Time modifiers for search
	 List of data types

	Search Command Reference
	 abstract
	 accum
	 addcoltotals
	 addinfo
	 addtotals
	 analyzefields
	 anomalies
	 anomalousvalue
	 append
	 appendcols
	 appendpipe
	 associate
	 audit
	 autoregress
	 bucket
	 bucketdir
	 chart
	 cluster
	 collect
	 concurrency
	 contingency
	 convert
	 correlate
	 crawl
	 dbinspect
	 dedup
	 delete
	 delta
	 diff
	 erex
	 eval
	 eventcount
	 eventstats
	 extract (kv)
	 fieldformat
	 fields
	 fieldsummary
	 filldown
	 fillnull
	 findtypes
	 folderize
	 format
	 gauge
	 gentimes
	 head
	 highlight
	 history
	 iconify
	 input
	 inputcsv
	 inputlookup
	 iplocation
	 join
	 kmeans
	 kvform
	 loadjob
	 localize
	 localop
	 lookup
	 makecontinuous
	 makemv
	 map
	 metadata
	 metasearch
	 multikv
	 multisearch
	 mvcombine
	 mvexpand
	 nomv
	 outlier
	 outputcsv
	 outputlookup
	 outputtext
	 overlap
	 predict
	 rangemap
	 rare
	 regex
	 relevancy
	 reltime
	 rename
	 replace
	 rest
	 return
	 reverse
	 rex
	 rtorder
	 run
	 savedsearch
	 script
	 scrub
	 search
	 searchtxn
	 selfjoin
	 set
	 setfields
	 sendemail
	 sichart
	 sirare
	 sistats
	 sitimechart
	 sitop
	 sort
	 spath
	 stats
	 strcat
	 streamstats
	 table
	 tags
	 tail
	 timechart
	 top
	 transaction
	 transpose
	 trendline
	 typeahead
	 typelearner
	 typer
	 uniq
	 untable
	 where
	 x11
	 xmlkv
	 xmlunescape
	 xpath
	 xyseries

	Internal Search Commands
	 About internal commands
	 collapse
	 dispatch
	 runshellscript
	 tscollect
	 tstats

	Search in the CLI
	 About searches in the CLI
	 Syntax for searches in the CLI

